[BZOJ 4144] [AMPPZ2014]Petrol

12 篇文章 0 订阅
11 篇文章 0 订阅
BZOJ传送门

题目描述

给定一个 n n n个点、 m m m条边的带权无向图,其中有 s s s个点是加油站。

每辆车都有一个油量上限 b b b,即每次行走距离不能超过 b b b,但在加油站可以补满。

q q q次询问,每次给出 x , y , b x,y,b x,y,b,表示出发点是 x x x,终点是 y y y,油量上限为 b b b,且保证 x x x点和 y y y点都是加油站,请回答能否从 x x x走到 y y y

输入输出格式

输入格式

第一行包含三个正整数 n , s , m ( 2 ≤ s ≤ n ≤ 200000 , 1 ≤ m ≤ 200000 ) n,s,m(2\le s\le n\le 200000,1\le m\le 200000) n,s,m(2sn200000,1m200000),表示点数、加油站数和边数。

第二行包含 s s s个互不相同的正整数 c [ 1 ] , c [ 2 ] , . . . c [ s ] ( 1 ≤ c [ i ] ≤ n ) c[1],c[2],...c[s](1\le c[i]\le n) c[1],c[2],...c[s](1c[i]n),表示每个加油站。

接下来 m m m行,每行三个正整数 u [ i ] , v [ i ] , d [ i ] ( 1 ≤ u [ i ] , v [ i ] ≤ n , u [ i ] ≠ v [ i ] , 1 ≤ d [ i ] ≤ 10000 ) u[i],v[i],d[i](1\le u[i],v[i]\le n,u[i]\ne v[i],1\le d[i]\le 10000) u[i],v[i],d[i](1u[i],v[i]n,u[i]̸=v[i],1d[i]10000),表示 u [ i ] u[i] u[i] v [ i ] v[i] v[i]之间有一条长度为 d [ i ] d[i] d[i]的双向边。

接下来一行包含一个正整数 q ( 1 ≤ q ≤ 200000 ) q(1\le q\le 200000) q(1q200000),表示询问数。

接下来 q q q行,每行包含三个正整数 x [ i ] , y [ i ] , b [ i ] ( 1 ≤ x [ i ] , y [ i ] ≤ n , x [ i ] ≠ y [ i ] , 1 ≤ b [ i ] ≤ 2 × 1 0 9 ) x[i],y[i],b[i](1\le x[i],y[i]\le n,x[i]\ne y[i],1\le b[i]\le 2\times 10^9) x[i],y[i],b[i](1x[i],y[i]n,x[i]̸=y[i],1b[i]2×109),表示一个询问。

输出格式

输出 q q q行。第 i i i行输出第 i i i个询问的答案,如果可行,则输出TAK,否则输出NIE

输入输出样例

输入样例#1:
6 4 5
1 5 2 6
1 3 1
2 3 2
3 4 3
4 5 5
6 4 5
4
1 2 4
2 6 9
1 5 9
6 5 8
输出样例#1:
TAK
TAK
TAK
NIE

解题分析

不难看出非加油站的点都是没有用的, 我们只关心加油站之间的最短路。

而这个模型又比较特殊, 我们只需要求出加油站的最小生成树即可。

怎么快速得到加油站之间的距离呢?有一个很妙的操作:把所有加油站的距离设为 0 0 0, 跑一遍多源最短路并记录每个点最近的加油站是哪一个, 最后将 s → t s\to t st, 长度为 k k k的边变成 b e l [ s ] → b e l [ t ] bel[s]\to bel[t] bel[s]bel[t], 长度为 d i s [ s ] + d i s [ t ] + k dis[s]+dis[t]+k dis[s]+dis[t]+k的边即可。

注意可能图中不连通, 倍增预处理的时候要处理完。

代码如下:

#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cctype>
#include <climits>
#include <algorithm>
#include <cmath>
#include <queue>
#define R register
#define IN inline
#define W while
#define gc getchar()
#define MX 200500
#define ll long long
template <class T>
IN void in(T &x)
{
	x = 0; R char c = gc;
	for (; !isdigit(c); c = gc);
	for (;  isdigit(c); c = gc)
	x = (x << 1) + (x << 3) + c - 48;
}
template <class T> IN T max(T a, T b) {return a > b ? a : b;}
int dot, line, s, q, cnt;
int head[MX], bel[MX], dis[MX], st[MX], head2[MX], bl[MX], fat[MX][20], mx[MX][20], dep[MX];
bool inq[MX];
std::queue <int> que;
struct INFO {int from, to, len;} dat[MX];
struct Edge {int to, len, nex;} edge[MX << 2];
struct Node {int son[2], fat, val, mx; bool rev;} tree[MX];
IN bool operator < (const INFO &x, const INFO &y) {return x.len > y.len;}
std::priority_queue <INFO> pq;
IN void add(R int from, R int to, R int len) {edge[++cnt] = {to, len, head[from]}, head[from] = cnt;}
IN void add2(R int from, R int to, R int len) {edge[++cnt] = {to, len, head2[from]}, head2[from] = cnt;}
int find(R int now) {return bl[now] == now ? now : bl[now] = find(bl[now]);}
IN void SPFA()
{
	std::memset(dis, 63, sizeof(dis));
	for (R int i = 1; i <= s; ++i) dis[st[i]] = 0, que.push(st[i]), bel[st[i]] = bl[st[i]] = st[i];
	R int now, i;
	W (!que.empty())
	{
		now = que.front(); que.pop();
		for (R int i = head[now]; i; i = edge[i].nex)
		{
			if (dis[edge[i].to] > dis[now] + edge[i].len)
			{
				dis[edge[i].to] = dis[now] + edge[i].len, bel[edge[i].to] = bel[now];
				if (!inq[edge[i].to]) inq[edge[i].to] = true, que.push(edge[i].to);
			}
		}
		inq[now] = false;
	}
}
IN void Kruskal()
{
	SPFA(); INFO cur; R int bla, blb;
	for (R int i = 1; i <= line; ++i)
	pq.push({bel[dat[i].from], bel[dat[i].to], dis[dat[i].from] + dis[dat[i].to] + dat[i].len});
	int tot = 0;
	W (!pq.empty())
	{
		cur = pq.top(); pq.pop();
		bla = find(cur.from), blb = find(cur.to);
		if (bla ^ blb)
		{
			bl[bla] = blb; ++tot;
			add2(cur.from, cur.to, cur.len), add2(cur.to, cur.from, cur.len);
		}
		if (tot == s - 1) break;
	}
}
void DFS(R int now, R int val)
{
	mx[now][0] = val;
	for (R int i = 1; i <= 18; ++i)
	{
		fat[now][i] = fat[fat[now][i - 1]][i - 1];
		if(!fat[now][i]) break;
		mx[now][i] = max(mx[now][i - 1], mx[fat[now][i - 1]][i - 1]);
	}
	for (R int i = head2[now]; i; i = edge[i].nex)
	{
		if(edge[i].to ^ fat[now][0])
		{
			fat[edge[i].to][0] = now;
			dep[edge[i].to] = dep[now] + 1;
			DFS(edge[i].to, edge[i].len);
		}
	}
}
IN int query(R int x, R int y)
{
	if(find(x) ^ find(y)) return INT_MAX;
	if(dep[x] < dep[y]) std::swap(x, y);
	int del = dep[x] - dep[y], tim = 0, ans = 0;
	W (del)
	{
		if(del & 1) ans = max(ans, mx[x][tim]), x = fat[x][tim];
		tim++, del >>= 1;
	}
	if(x == y) return ans;
	for (R int i = 18; ~i; --i) {if(fat[x][i] ^ fat[y][i]) ans = max(ans, max(mx[x][i], mx[y][i])), x = fat[x][i], y = fat[y][i];}
	return ans = max(ans, max(mx[x][0], mx[y][0]));
}
int main(void)
{
	int x, y, b;
	in(dot), in(s), in(line);
	for (R int i = 1; i <= s; ++i) in(st[i]);
	for (R int i = 1; i <= line; ++i)
	{
		in(dat[i].from), in(dat[i].to), in(dat[i].len);
		add(dat[i].from, dat[i].to, dat[i].len), add(dat[i].to, dat[i].from, dat[i].len);
	}
	Kruskal(); DFS(st[1], 0); in(q);
	W (q--)
	{
		in(x), in(y), in(b);
		if(query(x, y) > b) puts("NIE");
		else puts("TAK");
	}
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 牛牛和她的朋友们正在玩一个有趣的游戏,他们需要构建一个有 $n$ 个节点的无向图,每个节点都有一个唯一的编号并且编号从 $1$ 到 $n$。他们需要从节点 $1$ 到节点 $n$ 找到一条最短路径,其中路径长度是经过的边权的和。为了让游戏更有趣,他们决定在图上添加一些额外的边,这些边的权值都是 $x$。他们想知道,如果他们添加的边数尽可能少,最短路径的长度最多会增加多少。 输入格式 第一行包含两个正整数 $n$ 和 $m$,表示节点数和边数。 接下来 $m$ 行,每行包含三个整数 $u_i,v_i,w_i$,表示一条无向边 $(u_i,v_i)$,权值为 $w_i$。 输出格式 输出一个整数,表示最短路径的长度最多会增加多少。 数据范围 $2 \leq n \leq 200$ $1 \leq m \leq n(n-1)/2$ $1 \leq w_i \leq 10^6$ 输入样例 #1: 4 4 1 2 2 2 3 3 3 4 4 4 1 5 输出样例 #1: 5 输入样例 #2: 4 3 1 2 1 2 3 2 3 4 3 输出样例 #2: 2 算法 (BFS+最短路) $O(n^3)$ 我们把问题转化一下,假设原图中没有添加边,所求的就是点 $1$ 到点 $n$ 的最短路,并且我们已经求出了这个最短路的长度 $dis$。 接下来我们从小到大枚举边权 $x$,每次将 $x$ 加入图中,然后再次求解点 $1$ 到点 $n$ 的最短路 $dis'$,那么增加的最短路长度就是 $dis'-dis$。 我们发现,每次加入一个边都需要重新求解最短路。如果我们使用 Dijkstra 算法的话,每次加入一条边需要 $O(m\log m)$ 的时间复杂度,总的时间复杂度就是 $O(m^2\log m)$,无法通过本题。因此我们需要使用更优秀的算法。 观察到 $n$ 的范围比较小,我们可以考虑使用 BFS 求解最短路。如果边权均为 $1$,那么 BFS 可以在 $O(m)$ 的时间复杂度内求解最短路。那么如果我们只是加入了一条边的话,我们可以将边权为 $x$ 的边看做 $x$ 条边的组合,每次加入该边时,我们就在原始图上添加 $x$ 条边,边权均为 $1$。这样,我们就可以使用一次 BFS 求解最短路了。 但是,我们不得不考虑加入多条边的情况。如果我们还是将边权为 $x$ 的边看做 $x$ 条边的组合,那么我们就需要加入 $x$ 条边,而不是一条边。这样,我们就不能使用 BFS 了。 但是,我们可以使用 Floyd 算法。事实上,我们每次加入边时,只有边权等于 $x$ 的边会发生变化。因此,如果我们枚举边权 $x$ 时,每次只需要将边权等于 $x$ 的边加入图中,然后使用 Floyd 算法重新计算最短路即可。由于 Floyd 算法的时间复杂度为 $O(n^3)$,因此总的时间复杂度为 $O(n^4)$。 时间复杂度 $O(n^4)$ 空间复杂度 $O(n^2)$ C++ 代码 注意点:Floyd算法计算任意两点之间的最短路径,只需要在之前的路径基础上加入新的边构成的新路径进行更新即可。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值