BZOJ 2301: [HAOI2011]Problem b(莫比乌斯反演)

2301: [HAOI2011]Problem b

Time Limit: 50 Sec  Memory Limit: 256 MB
Submit: 7931  Solved: 3876
[Submit][Status][Discuss]

Description

 

对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数。


 

Input

第一行一个整数n,接下来n行每行五个整数,分别表示a、b、c、d、k

 

Output

共n行,每行一个整数表示满足要求的数对(x,y)的个数

 

Sample Input

2

2 5 1 5 1

1 5 1 5 2



 

Sample Output


14

3



 

HINT

 



100%的数据满足:1≤n≤50000,1≤a≤b≤50000,1≤c≤d≤50000,1≤k≤50000

思路:可是说是莫比乌斯反演的基本题目了。详解见博客https://blog.csdn.net/huayunhualuo/article/details/51378405

代码:

#include<iostream>
#include<cmath>
#include<iomanip>
#include<cstring>
#include<algorithm>
#include<cstdio>
#include<string>
#include<queue>
#include<vector>
#include<map>
#define ll long long
#define inf 0x3f3f3f3f3f3f3f3fLL
using namespace std;
const int maxn=1e5+10;
ll mu[maxn],pri[maxn];
ll a,b,c,d,k;
ll sum[maxn];
bool ok[maxn];
void init()
{
    mu[1]=sum[1]=1;
    ll cnt=0;
    for(ll i=2;i<maxn;i++)
    {
        if(!ok[i])
        {
            pri[cnt++]=i;
            mu[i]=-1;
        }
        for(ll j=0;j<cnt&&i*pri[j]<maxn;j++)
        {
            ok[i*pri[j]]=1;
            if(i%pri[j]) mu[i*pri[j]]=-mu[i];
            else
            {
                mu[i*pri[j]]=0;
                break;
            }
        }
        sum[i]=sum[i-1]+mu[i];
    }
}
ll jud(ll x,ll y)
{
    x/=k;y/=k;
    if(x>y) swap(x,y);
    ll ans=0;
    for(ll i=1,l=1;i<=x;i=l+1)
    {
        l=min(x/(x/i),y/(y/i));
        ans+=(sum[l]-sum[i-1])*(x/i)*(y/i);
    }
    return ans;
}
int main()
{
    int T,cas=1;
    init();
    scanf("%d",&T);
    while(T--)
    {
        scanf("%lld%lld%lld%lld%lld",&a,&b,&c,&d,&k);
        //printf("Case %d: ",cas++);
        if(!k)
        {
            printf("0\n");
            continue;
        }
        else
        {
            ll ans=jud(b,d)+jud(a-1,c-1)-jud(a-1,d)-jud(b,c-1);
            printf("%lld\n",ans);
        }
    }
    return 0;
}

 

发布了531 篇原创文章 · 获赞 77 · 访问量 8万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 技术黑板 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览