Maths | 主成分分析法(离散K-L变换)

离散K-L变换(Discrete Karhunen–Loève Transform, KLT)源于PCA,用于数据压缩。本文深入探讨K-L变换的原理,包括向量分解、误差估计及最小化、寻找最优正交向量系,以及PCA在编码解码应用中的推导,揭示PCA的高效本质。" 112173970,10535712,R语言GO与KEGG富集分析一键工具,"['生物信息学', '数据分析', 'R语言']
摘要由CSDN通过智能技术生成

1. 概述

全称:Discrete Karhunen–Loève Transform (KLT)

离散K-L变换来源于祖宗PCA(Principal component analysis)。参见维基百科

  • PCA方法在1901年由Karl Pearson提出。在上世纪30年代,Harold Hotelling开拓了PCA的应用方向。
  • PCA在信号处理领域称为Discrete Karhunen–Loève Transform (KLT),也就是我们今天的主角;在多变量质量控制领域称为the Hotelling transform,等等。

目的:将原始特征转换为数量较少的新特征。

特点:

  • 适用于任意概率密度函数
  • 最小均方误差意义下的最优正交变换
  • 在消除模式特征之间的相关性、突出差异性方面具有最优效果

2. K-L变换方法和原理推导

2.1. 向量分解

列向量\(\boldsymbol x\),我们用确定的完备正交归一向量系

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值