目录
1. 概述
全称:Discrete Karhunen–Loève Transform (KLT)
离散K-L变换来源于祖宗PCA(Principal component analysis)。参见维基百科
- PCA方法在1901年由Karl Pearson提出。在上世纪30年代,Harold Hotelling开拓了PCA的应用方向。
- PCA在信号处理领域称为Discrete Karhunen–Loève Transform (KLT),也就是我们今天的主角;在多变量质量控制领域称为the Hotelling transform,等等。
目的:将原始特征转换为数量较少的新特征。
特点:
- 适用于任意概率密度函数
- 最小均方误差意义下的最优正交变换
- 在消除模式特征之间的相关性、突出差异性方面具有最优效果
2. K-L变换方法和原理推导
2.1. 向量分解
对列向量\(\boldsymbol x\),我们用确定的完备正交归一向量系