【4.4 快速幂详解及快速幂求逆元】

本文详细解析了快速幂的原理和实现,包括其在求解ak mod p 的高效方法,以及如何结合费马小定理求逆元。介绍了计算逆元的概念、注意事项和两种求法。通过实例和代码展示了在质数和非质数情况下逆元的求解技巧。
摘要由CSDN通过智能技术生成

更 好 的 阅 读 体 验 \color{red}{更好的阅读体验}

4.4.1 快速幂详解

概念

  • 快速求出 a k m o d    p a^k\mod p akmodp的结果

思想

  • 预处理出 a 2 0 , a 2 1 , a 2 2 … a 2 l o g 2 k a^{2^0},a^{2^1},a^{2^2}\dots a^{2^{log_2^k}} a20,a21,a22a2log2k的结果
  • 则使得 k = 2 p 1 + 2 p 2 + ⋯ + 2 p i k=2^{p_1}+2^{p_2}+\dots+2^{p_i} k=2p1+2p2++2pi
  • 即: a k = a 2 p 1 × a 2 p 2 × ⋯ × a 2 p i a^k=a^{2^{p_1}}\times a^{2^{p_2}}\times\dots\times a^{2^{p_i}} ak=a2p1×a2p2××a2pi
  • 对于 a 2 0 × a 2 0 = a 2 1 , a 2 1 × a 2 1 = a 2 2 a^{2^0}\times a^{2^0}=a^{2^{1}},a^{2^{1}}\times a^{2^{1}}=a^{2^{2}} a20×a20=a21,a21×a21=a22,即 a 2 p i = a 2 p i − 1 × a 2 p i − 1 a^{2^{p_i}}=a^{2^{p_{i-1}}}\times a^{2^{p_{i-1}}} a2pi=a2pi1×a2pi1
  • 综上所述,在操作时记录 a p i a^{p_i} api的值,和累乘的结果
  • k k k化为二进制表示,按位>>操作,若当前位是 1 1 1,则对当前累乘的结果 × a p i m o d    p \times a^{p_i} \mod p ×apimodp
  • 每次对 k k k进行>>操作后,更新 a p i + 1 = a p i × a p i m o d    p a^{p_{i+1}}=a^{p_i}\times a^{p_i}\mod p api+1=api×apimodp
  • 当二进制下的 k k k无法再>>时,累乘结果即为答案

模板

typedef long long LL;

LL qmi(LL a,LL k,LL p){  //计算 a^k % p 的结果
    
    LL res=1;  //记录累乘结果
    
    while(k){
        
        if(k&1) res=res*a%p;  //k&1得到当前位,若为1则累乘a^pi
        a=a*a%p;  //更新a^pi
        k>>=1;  //右移1位
    }
    
    return res;
    
}

4.4.2 快速幂求逆元

概念

  • 同余:设 m m m为正整数, a a a b b b是整数,若 m ∣ a − b m|a-b mab,则称 a a a m m m同余于 b b b,或 a a a b b b m m m同余,记作 a ≡ b ( m o d   m ) a\equiv b(mod~m) ab(mod m)
  • a b ≡ 1 ( m o d   m ) ab\equiv 1(mod~m) ab1(mod m),则称 b b b a a a的模 m m m逆,记作 a − 1 ( m o d   m ) a^{-1}(mod~m) a1(mod m) a − 1 a^{-1} a1

注意

  • a a a的模 m m m逆存在 ⇔ \Leftrightarrow a a a m m m互质

  • m m m为质数时,用费马小定理求

  • m m m不为质数时,用扩展欧几里得算法求

思想

  • 利用快速幂实现 m m m为质数时用费马小定理求逆元

  • 费马小定理:设 p p p为素数,且 a a a p p p互质,则 a p − 1 ≡ 1 ( m o d   p ) a^{p^{-1}}\equiv 1(mod~p) ap11(mod p)

  • a p − 1 ≡ 1 ( m o d   p ) → a × a p − 2 ≡ 1 ( m o d   p ) a × b ≡ 1 ( m o d   p ) 即 : b = a p − 2 \begin{aligned} a^{p^{-1}}\equiv 1(mod~p) \rightarrow &a\times a^{p^{-2}}\equiv 1(mod~p)\\ &a\times b\equiv 1(mod~p)\\ &即:b=a^{p^{-2}} \end{aligned} ap11(mod p)a×ap21(mod p)a×b1(mod p)b=ap2


模板例题 876. 快速幂求逆元

原题链接

描述

给定 n 组 ai,pi,其中 pi 是质数,求 ai 模 pi 的乘法逆元,若逆元不存在则输出 impossible。

注意:请返回在 0∼p−1 之间的逆元。

乘法逆元的定义
若整数 b,m 互质,并且对于任意的整数 a,如果满足 b|a,则存在一个整数 x,使得 a/b≡a×x(modm),则称 x 为 b 的模 m 乘法逆元,记为 b−1(modm)。
b 存在乘法逆元的充要条件是 b 与模数 m 互质。当模数 m 为质数时,bm−2 即为 b 的乘法逆元。

输入格式
第一行包含整数 n。

接下来 n 行,每行包含一个数组 ai,pi,数据保证 pi 是质数。

输出格式
输出共 n 行,每组数据输出一个结果,每个结果占一行。

若 ai 模 pi 的乘法逆元存在,则输出一个整数,表示逆元,否则输出 impossible。

数据范围
1≤n≤105,
1≤ai,pi≤2∗109
输入样例:

3
4 3
8 5
6 3

输出样例:

1
2
impossible

代码

#include <bits/stdc++.h>
using namespace std;

typedef long long LL;

LL qmi(LL a,LL k,LL p){
    
    LL res=1;
    
    while(k){
        
        if(k&1) res=res*a%p;
        a=a*a%p;
        k>>=1;
        
    }
    
    return res;
    
}

int main(){
    
    int n;
    
    cin>>n;
    
    while(n--){
        
        int a,p;
        
        cin>>a>>p;
        
        if(a%p==0) cout<<"impossible"<<endl;  //a与p不互质则说明无逆元
        else cout<<qmi(a,p-2,p)<<endl;
        
    }
    
    return 0;
        
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

浪漫主义狗

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值