题意:求n的所有因子和;
思路:类似于筛选法求素数的思想,只有第一次的时候了解过它的思想,然后就只是用来求素数,思想的运用反而少;
筛选法求素数:
1 int prime() 2 { 3 memset(vis, true, sizeof(vis)); 4 for(int i = 2; i <= sqrt(N +0.5); i++) 5 if(vis[i]) 6 for(int j = i << 1 ; j <= N; j += i) 7 vis[j] = false;///该数倍数的都被筛去了 8 int k=0; 9 for(int i = 2 ; i <= N; i++) 10 if(vis[i]) 11 pri[k++]=i; 12 }
该题也类似,枚举所有的数字 i ,然后枚举可能的倍数 j ,好比 i 就是 i * j 的因子,a[i*j] += i;
打表:
1 memset(a,0,sizeof(a)); 2 for(i=1;i<=maxe;i++) 3 { 4 for(j=2;i*j<=maxe;j++)//类似于筛法求素数 5 { 6 a[i*j]=a[i*j]+i; 7 } 8 }