BZOJ4331: JSOI2012 越狱老虎桥

BZOJ 同时被 3 个专栏收录
374 篇文章 1 订阅
6 篇文章 0 订阅

给出一个无向图,问在其中任意加入一条边后,删去最小的一条边使得图不连通,这条被删去的边权的最大值

先缩环,因为环上的边不能砍
剩下的边按边权从小到大排序
从最小的边开始每条边考虑,如果他和之前边的并集在一条链上,那么一定有一种加边方案使得他们都在环上,这时他们都不能砍,所以ans一定不比他小
直到有一条边,和之前的边的并集不在一条链上,加入一条边一定不能使他们都在环上,这条边的边权即答案

缩环后,把这些边并起来,LCA讨论一下

code:

#include<set>
#include<map>
#include<deque>
#include<queue>
#include<stack>
#include<cmath>
#include<ctime>
#include<bitset>
#include<string>
#include<vector>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<climits>
#include<complex>
#include<iostream>
#include<algorithm>
#define ll long long
using namespace std;

inline void read(int &x)
{
    char c;
    while(!((c=getchar())>='0'&&c<='9'));
    x=c-'0';
    while((c=getchar())>='0'&&c<='9') (x*=10)+=c-'0';
}
inline void up(int &x,const int y){if(x<y)x=y;}
inline void down(int &x,const int y){if(x>y)x=y;}
inline void swap(int &x,int &y){x^=y;y^=x;x^=y;}
const int maxn = 510000;
const int maxm = 1100000;
const int maxd = 22;

int n,m;

struct edge
{
    int y,c,nex;
    edge(){}
    edge(const int _y,const int _c,const int _nex){y=_y;c=_c;nex=_nex;}
}a[maxm<<1]; int len,fir[maxn];
inline void ins(const int x,const int y,const int c){a[++len]=edge(y,c,fir[x]);fir[x]=len;}

struct node{int x,y,c;}e[maxm];
inline bool cmp(const node x,const node y){return x.c<y.c;}

int t[maxn],tp;
bool v[maxn];
int id,dfn[maxn],low[maxn];
int cnt,bel[maxn];
void tarjan(const int x,const int pre)
{
    dfn[x]=low[x]=++id;
    t[++tp]=x; v[x]=true;
    for(int k=fir[x];k;k=a[k].nex)if((k^1)!=pre)
    {
        const int y=a[k].y;
        if(!dfn[y]) tarjan(y,k),down(low[x],low[y]);
        else if(v[y]) down(low[x],dfn[y]);
    }
    if(low[x]==dfn[x])
    {
        int la=0; cnt++;
        while(la!=x)
        {
            bel[la=t[tp--]]=cnt;
            v[la]=false;
        }
    }
}

int dep[maxn],fa[maxn][maxd];
void build_(const int x,const int ff)
{
    for(int i=1;i<maxd;i++) if(fa[x][i-1])
        fa[x][i]=fa[fa[x][i-1]][i-1];

    for(int k=fir[x];k;k=a[k].nex) if(a[k].y!=ff)
    {
        const int y=a[k].y;
        fa[y][0]=x; dep[y]=dep[x]+1;
        build_(y,x);
    }
}
int LCA(int x,int y)
{
    if(dep[x]<dep[y]) swap(x,y);
    for(int i=maxd-1;i>=0;i--)
        if(dep[x]-dep[y]>=(1<<i)) x=fa[x][i];
    if(x==y) return x;
    for(int i=maxd-1;i>=0;i--)
        if(fa[x][i]!=fa[y][i]) x=fa[x][i],y=fa[y][i];
    return fa[x][0];
}

int main()
{
    len=1;

    read(n); read(m);
    if((ll)n*(n-1)/2==m+1) { printf("-1\n"); return 0; }
    for(int i=1;i<=m;i++)
    {
        int x,y,c; read(x); read(y); read(c);
        e[i].x=x; e[i].y=y; e[i].c=c;
        ins(x,y,c); ins(y,x,c);
    }
    id=tp=0; tarjan(1,0);

    if(cnt==1) { printf("-1\n"); return 0; }

    len=0; memset(fir,0,sizeof fir);
    for(int i=1;i<=m;i++) 
    {
        e[i].x=bel[e[i].x]; e[i].y=bel[e[i].y];
        if(e[i].x!=e[i].y) ins(e[i].x,e[i].y,e[i].c),ins(e[i].y,e[i].x,e[i].c);
    }
    dep[1]=1; build_(1,0);

    sort(e+1,e+m+1,cmp);

    int ans=-1;
    int x=0,y=0,lca=0;
    for(int i=1;i<=m;i++) if(e[i].x!=e[i].y)
    {
        if(dep[e[i].x]>dep[e[i].y]) swap(e[i].x,e[i].y);

        ans=e[i].c;
        if(!x) { x=e[i].x,y=e[i].y,lca=x; continue; }
        if(lca!=x)
        {
            int t1=LCA(lca,e[i].y);
            if(t1==e[i].y||t1!=lca) break;
            int t2=LCA(e[i].y,x);
            if(t2==x||t2==e[i].y)
            {
                if(dep[x]<dep[e[i].y])x=e[i].y;
                continue;
            }
            if(t2!=lca) break;
            int t3=LCA(e[i].y,y);
            if(t3==y||t3==e[i].y)
            {
                if(dep[y]<dep[e[i].y])y=e[i].y;
                continue;
            }
            break;
        }
        else
        {
            int tlca=LCA(e[i].y,y);
            if(dep[tlca]<=min(dep[x],dep[e[i].x]))
            {
                x=e[i].y; lca=tlca;
            }
            else if(tlca==y||tlca==e[i].y)
            {
                if(dep[x]>dep[e[i].x]) x=e[i].x;
                if(dep[y]<dep[e[i].y]) y=e[i].y;
                lca=x;
            }
            else break;
        }
    }
    printf("%d\n",ans);

    return 0;
}
  • 0
    点赞
  • 0
    评论
  • 0
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

©️2021 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值