ErbaoLiu
码龄8年
关注
提问 私信
  • 博客:866,265
    社区:1
    问答:429
    动态:2
    866,697
    总访问量
  • 246
    原创
  • 4,203
    排名
  • 48,099
    粉丝
  • 473
    铁粉

个人简介:计算数学 本硕

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:安徽省
  • 加入CSDN时间: 2017-03-21
博客简介:

L

博客描述:
通俗
查看详细资料
  • 原力等级
    当前等级
    8
    当前总分
    5,263
    当月
    40
个人成就
  • Java领域优质创作者
  • 获得881次点赞
  • 内容获得238次评论
  • 获得2,770次收藏
  • 代码片获得7,685次分享
创作历程
  • 1篇
    2025年
  • 53篇
    2024年
  • 28篇
    2023年
  • 22篇
    2022年
  • 11篇
    2021年
  • 70篇
    2020年
  • 45篇
    2019年
  • 32篇
    2018年
成就勋章
TA的专栏
  • 自然语言处理&大模型
    付费
    58篇
  • 数据分析&大模型
    付费
    58篇
  • Prometheus
    付费
    17篇
  • Flink
    付费
    28篇
  • 机器学习&大模型
    付费
    86篇
  • 产品设计与Axure
    2篇
  • PyTorch
    4篇
  • Flink & DolphinScheduler
    3篇
  • Oracle
    2篇
  • docker
    2篇
  • 数据湖
    1篇
  • oozie
    2篇
  • Scala
    1篇
  • 设计模式
    15篇
  • Tools
    3篇
  • tensorflow
    1篇
  • 大数据
    11篇
  • Spark
    9篇
  • Hadoop
    16篇
  • Java
    18篇
  • Spring
    2篇
  • 算法
    2篇
  • Python
    13篇
  • Linux
    4篇
  • Git/GitHub
    5篇
  • MySQL
    15篇
  • Redis
    2篇
  • Hive
    2篇
  • eslaticsearch
    1篇
兴趣领域 设置
  • 大数据
    hadoop
创作活动更多

超级创作者激励计划

万元现金补贴,高额收益分成,专属VIP内容创作者流量扶持,等你加入!

去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

Quinlan C4.5剪枝U(0,6)U(1,16)等置信上限如何计算?

f可以是E/N,有时候用修正的f=(E+0.5)/N。猜测Quinlan使用是f=(E+0.5)/N,而且使用了如下两个值进行线性插值计算。之前看到Quinlan中关于C4.5决策树算法剪枝环节中,关于错误率e置信区间估计,为啥。当E=0时,U(0,1)=0.75,U(0,6)=0.206,U(0,9)=0.143?本文将给出本作者的一个大胆猜测。(2)对于E不为0的情况。
原创
发布博客 2025.01.15 ·
285 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

公开-自动数据挖掘与分析实操代码(免费领取)

本项目旨在自动实现数据挖掘与分析全流程,为用户更快速、精准洞察数据价值。凡订阅如下专栏之一的读者:自然语言处理&大模型数据分析&大模型机器学习&大模型均可免费领取自动数据挖掘与分析实操完整代码。自动数据分析模块主要分为:1、数据接入2、数据探索3、数据处理4、数据切分5、数据模型(模型选择、数据建模、模型评估、模型调优、模型预测)。
原创
发布博客 2024.11.06 ·
799 阅读 ·
16 点赞 ·
0 评论 ·
20 收藏

自动数据挖掘与分析实操代码(免费领取)

本项目旨在自动实现数据挖掘与分析全流程,为用户更快速、精准洞察数据价值。凡订阅如下专栏之一的读者:自然语言处理&大模型数据分析&大模型机器学习&大模型均可免费领取自动数据挖掘与分析实操完整代码。自动数据分析模块主要分为:1、数据接入2、数据探索3、数据处理4、数据切分5、数据模型(模型选择、数据建模、模型评估、模型调优、模型预测)。
原创
发布博客 2024.11.06 ·
122 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

PART 1 数据挖掘概论 — 数据挖掘方法论

CRISP-DM(Cross-Industry Standard Process for Data Mining)是一种广泛使用的数据挖掘过程框架,由SPSS公司提出。SEMMA(Sample, Explore, Modify, Model, and Assess)是另一种数据挖掘方法论,由SAS公司提出。数据库知识发掘(Knowledge Discovery in Database,KDD)是从数据库中的大量数据中发现不明显、之前未知、可能有用的知识。(data mining)和。
原创
发布博客 2024.10.29 ·
463 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

ChatGLM + LangChain + Gradio构建前后端分离的大模型应用程序

ChatGLM-6B中英双语对话大模型Windows本地部署实战-CSDN博客LangChain是一个用于开发由大型语言模型(llm)支持的应用程序的框架。LangChain简化了LLM应用程序生命周期的每个阶段:(1)开发:使用LangChain的开源构建块组件和第三方集成来构建应用程序。使用LangGraph构建具有一流的流和人在循环支持的有状态代理。(2)产品化:使用LangSmith来检查、监控和评估您的链,以便您可以自信地持续优化和部署。
原创
发布博客 2024.10.28 ·
137 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

ChatGLM-6B LoRA微调实战(含完整代码)

本文将使用LoRA微调方法对ChatGLM-6B大模型进行微调。
原创
发布博客 2024.10.24 ·
244 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

ChatGLM-6B大模型 + Bert预训练模型 + RAG实现知识库信息抽取(含完整代码)

‌本文将基于ChatGLM-6B大模型、Bert预训练模型和RAG完整金融知识库信息抽取任务。
原创
发布博客 2024.10.21 ·
333 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

ChatGLM-6B和Prompt搭建专业领域知识问答机器人应用方案(含完整代码)

本文基于ChatGLM-6B大模型和Pompt提示工程搭建医疗领域知识问答机器人为例。
原创
发布博客 2024.10.21 ·
811 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

连接不上hugging face的解决方法

【代码】连接不上hugging face的解决方法。
原创
发布博客 2024.10.20 ·
414 阅读 ·
4 点赞 ·
0 评论 ·
5 收藏

ChatGLM-6B中英双语对话大模型Windows本地部署实战

ChatGLM是智谱清言大模型的开源版本,目前有ChartGLM、ChatGLM2、ChatGLM3和GLM-4版本。ChatGLM:GitHub - THUDM/ChatGLM-6B: ChatGLM-6B: An Open Bilingual Dialogue Language Model | 开源双语对话语言模型简介:中文领域效果最好的开源底座模型之一,针对中文问答和对话进行了优化。经过约 1T 标识符的中英双语训练,辅以监督微调、反馈自助、人类反馈强化学习等技术的加持。
原创
发布博客 2024.10.19 ·
312 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

PyTorch从零实现和可视化Transformer注意力(Additive Attention、Scaled Dot Product Attention、Multi-Head Attention)

上面公式没有体现批量操作,每个矩阵可以添加batch_size维度,例如Q的维度为(batch_size,n,d)。
翻译
发布博客 2024.10.16 ·
175 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

使用PyTorch从0实现Fashion-MNIST数据集分类

【代码】使用PyTorch从0实现Fashion-MNIST数据集分类。
原创
发布博客 2024.10.12 ·
429 阅读 ·
2 点赞 ·
0 评论 ·
1 收藏

Windows11安装CUDA、cuDNN、PyTorch详解

‌cuDNN(CUDA Deep Neural Network library)是一个由NVIDIA开发的深度学习GPU加速库,旨在为深度学习任务提供高效、标准化的原语(基本操作)来加速深度学习框架在NVIDIA GPU上的运算。此外,PyTorch还具有高度的灵活性和可扩展性,支持多种硬件平台,并且有一个活跃的社区,提供了大量的教程和资源,使得用户可以快速上手并解决实际问题。PyTorch的核心特点包括:‌12。可以看到NVIDIA GPU驱动版本为546.56,支持的CUDA最高版本为12.3。
原创
发布博客 2024.10.12 ·
5375 阅读 ·
39 点赞 ·
6 评论 ·
87 收藏

使用keras搭建GRU神经网络创作莎士比亚小说

【代码】使用keras搭建GRU神经网络创作莎士比亚小说。
原创
发布博客 2024.10.08 ·
295 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

使用keras-tuner微调神经网络超参数

本文将介绍keras-tuner提供了三种神经网络超参数调优方法。它们分别是随机搜索RandomSearch、HyperBand和贝叶斯优化BayesianOptimization。
原创
发布博客 2024.10.06 ·
275 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

使用TensorBoard可视化模型

TensorBoard是一款出色的交互式的模型可视化工具。安装TensorFlow时,会自动安装TensorBoard。
原创
发布博客 2024.10.05 ·
350 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Ollama本地私有化部署通义千问大模型Qwen2.5

Qwen是阿里巴巴集团Qwen团队的大型语言模型和大型多模态模型系列。现在大型语言模型已经升级到Qwen2.5。语言模型和多模态模型都是在大规模多语言和多模态数据上进行预训练的,并在符合人类偏好的高质量数据上进行后训练。Qwen具有自然语言理解、文本生成、视觉理解、音频理解、工具使用、角色扮演、人工智能代理等功能。在Qwen2发布的过去三个月里,许多开发人员在Qwen2语言模型上构建了新的模型,向我们提供了宝贵的反馈。在此期间,我们专注于创建更智能、知识更丰富的语言模型。
原创
发布博客 2024.09.26 ·
3469 阅读 ·
1 点赞 ·
0 评论 ·
3 收藏

机器学习实战—天猫用户重复购买预测

商家有时会在特定日期,例如节礼日(Boxing-day),黑色星期五或是双十一(11月11日)开展大型促销活动或者发放优惠券以吸引消费者,然而很多被吸引来的买家都是一次性消费者,这些促销活动可能对销售业绩的增长并没有长远帮助,因此为解决这个问题,商家需要识别出哪类消费者可以转化为重复购买者。通过对这些潜在的忠诚客户进行定位,商家可以大大降低促销成本,提高投资回报率(Return on Investment, ROI)。众所周知的是,在线投放广告时精准定位客户是件比较难的事情,尤其是针对新消费者的定位。
原创
发布博客 2024.09.18 ·
682 阅读 ·
4 点赞 ·
0 评论 ·
9 收藏

模型验证 — 交叉验证Cross Validation的方法

交叉验证(Cross Validation)是验证模型性能的一种统计分析方法,其基本思想是在某种意义下将原始数据进行分组,一部分作为模型的训练数据集(训练集),另一部分作为模型的验证数据集(验证集)。首先用训练集对模型进行训练,再利用验证集来测试训练得到的模型,以此来作为评价模型的性能指标。常用的交叉验证方法有简单交叉验证、K折交叉验证、留一法交叉验证和留P法交叉验证。本文以一个模拟的线性回归模型为例来介绍各种交叉验证方法。
原创
发布博客 2024.09.18 ·
407 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Level3 — PART 3 — 自然语言处理与文本分析

N-Gram 分词分词及词性标注的难点法则式分词法。
原创
发布博客 2024.09.08 ·
304 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏
加载更多