
Quinlan C4.5剪枝U(0,6)U(1,16)等置信上限如何计算?
f可以是E/N,有时候用修正的f=(E+0.5)/N。猜测Quinlan使用是f=(E+0.5)/N,而且使用了如下两个值进行线性插值计算。之前看到Quinlan中关于C4.5决策树算法剪枝环节中,关于错误率e置信区间估计,为啥。当E=0时,U(0,1)=0.75,U(0,6)=0.206,U(0,9)=0.143?本文将给出本作者的一个大胆猜测。(2)对于E不为0的情况。
自然语言处理&大模型
数据分析&大模型
Prometheus
Flink
机器学习&大模型
产品设计与Axure
PyTorch
Flink & DolphinScheduler
Oracle
docker
数据湖
oozie
Scala
设计模式
Tools
tensorflow
大数据
Spark
Hadoop
Java
Spring
算法
Python
Linux
Git/GitHub
MySQL
Redis
Hive
eslaticsearch
