是小可爱呀~
码龄7年
关注
提问 私信
  • 博客:2,048
    2,048
    总访问量
  • 7
    原创
  • 2,181,241
    排名
  • 0
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:浙江省
  • 加入CSDN时间: 2017-10-28
博客简介:

L_BLmua的博客

查看详细资料
个人成就
  • 获得2次点赞
  • 内容获得1次评论
  • 获得1次收藏
创作历程
  • 7篇
    2019年
成就勋章
TA的专栏
  • PAT
    7篇
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

PTA | 乙级 1007 素数对猜想 (20 分)

让我们定义d​n​​为:d​n​​=p​n+1​​−p​n​​,其中p​i​​是第i个素数。显然有d​1​​=1,且对于n>1有d​n​​是偶数。“素数对猜想”认为“存在无穷多对相邻且差为2的素数”。 现给定任意正整数N(<10​5​​),请计算不超过N的满足猜想的素数对的个数。 输入格式: 输入在一行给出正整数N。 输出格式: 在一行中输出不超过N的满足猜想的素数对的个数。...
原创
发布博客 2019.01.22 ·
179 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

PTA | 乙级 1006 换个格式输出整数 (15 分)

让我们用字母 B 来表示“百”、字母 S 表示“十”,用 12...n 来表示不为零的个位数字 n(<10),换个格式来输出任一个不超过 3 位的正整数。例如 234 应该被输出为 BBSSS1234,因为它有 2 个“百”、3 个“十”、以及个位的 4。 输入格式: 每个测试输入包含 1 个测试用例,给出正整数 n(<1000)。 输出格式: 每个测试用例的输出占一行,用规定...
原创
发布博客 2019.01.22 ·
228 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

PTA | 乙级 1005 继续(3n+1)猜想 (25 分)

卡拉兹(Callatz)猜想已经在1001中给出了描述。在这个题目里,情况稍微有些复杂。 当我们验证卡拉兹猜想的时候,为了避免重复计算,可以记录下递推过程中遇到的每一个数。例如对 n=3 进行验证的时候,我们需要计算 3、5、8、4、2、1,则当我们对 n=5、8、4、2 进行验证的时候,就可以直接判定卡拉兹猜想的真伪,而不需要重复计算,因为这 4 个数已经在验证3的时候遇到过了,我们称 5、8...
原创
发布博客 2019.01.22 ·
291 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

PTA | 乙级 1004 成绩排名 (20 分)

读入 n(>0)名学生的姓名、学号、成绩,分别输出成绩最高和成绩最低学生的姓名和学号。 输入格式: 每个测试输入包含 1 个测试用例,格式为 第 1 行:正整数 n 第 2 行:第 1 个学生的姓名 学号 成绩 第 3 行:第 2 个学生的姓名 学号 成绩 ... ... ... 第 n+1 行:第 n 个学生的姓名 学号 成绩 其中姓名和学号均为不超过 10 个字符的字符串...
原创
发布博客 2019.01.21 ·
558 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

PTA | 乙级 1003 我要通过! (20 分)

“答案正确”是自动判题系统给出的最令人欢喜的回复。本题属于 PAT 的“答案正确”大派送 —— 只要读入的字符串满足下列条件,系统就输出“答案正确”,否则输出“答案错误”。 得到“答案正确”的条件是: 字符串中必须仅有 P、 A、 T这三种字符,不可以包含其它字符; 任意形如 xPATx 的字符串都可以获得“答案正确”,其中 x 或者是空字符串,或者是仅由字母 A 组成的字符串; 如果 a...
原创
发布博客 2019.01.21 ·
356 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

PTA | 乙级 1002 写出这个数 (20 分)

读入一个正整数 n,计算其各位数字之和,用汉语拼音写出和的每一位数字。 输入格式: 每个测试输入包含 1 个测试用例,即给出自然数 n 的值。这里保证 n 小于 10​的100次方​​。 输出格式: 在一行内输出 n 的各位数字之和的每一位,拼音数字间有 1 空格,但一行中最后一个拼音数字后没有空格。 输入样例: 1234567890987654321123456789 输出样例...
原创
发布博客 2019.01.21 ·
225 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

PAT | 乙级 1001 害死人不偿命的(3n+1)猜想 (15 分)

卡拉兹(Callatz)猜想: 对任何一个正整数 n,如果它是偶数,那么把它砍掉一半;如果它是奇数,那么把 (3n+1) 砍掉一半。这样一直反复砍下去,最后一定在某一步得到 n=1。卡拉兹在 1950 年的世界数学家大会上公布了这个猜想,传说当时耶鲁大学师生齐动员,拼命想证明这个貌似很傻很天真的命题,结果闹得学生们无心学业,一心只证 (3n+1),以至于有人说这是一个阴谋,卡拉兹是在蓄意延缓美国...
原创
发布博客 2019.01.21 ·
156 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏