- 尾声:
- 尾声:
- 本综述是由我们研究团队在一次讨论会上计划的, 我们旨在总结 LLM 的最新进展,为我们的团队成员提供一份高度可读性的报告。第一稿于 2023 年 3 月 13 日完成,我们的团队成员尽最大努力以相对客观、全面的方式囊括有关LLM 的相关研究。接着,我们进行了多次细致的写作和内容修订。尽管我们付出了巨大的努力,但这份综述仍远非完美: 我们可能会遗漏重要的参考文献或主题,也可能存在不严谨的表述或讨论。 由于空间有限, 我们只能按照特定的选择标准在图 1和表 1中展示部分现有的 LLM。
- 然而,我们在 GitHub 页面(https://github.com/RUCAIBox/LLMSurvey)上设置了更为宽松的模型选择标准,该页面将定期维护。我们将不断更新这份文献综述,并尽力提高质量。对于我们来说,综述写作也是我们自己对 LLM 的学习过程。 对于那些有建设性意见来改进这份文献综述的读者,欢迎在我们综述的 GitHub 页面上留言或直接给我们的作者发电子邮件。我们将根据收到的评论或建议进行修订,并在我们的综述中致谢为此做出建设性贡献的读者。
- 更新日志
- 在这部分中,我们会定期更新这篇综述文章提交到 arXiv 的更新日志:
- • 2023 年 3 月 31 日首次发布:初始版本。
- • 2023 年 4 月 9 日更新:添加了附属信息,修订了图 1和表 1,澄清了 LLM 的相应选择标准,改进了写作,并纠正了一些小错误。
- • 2023 年 4 月 11 日更新:纠正了关于代码库资源的错误。
- • 2023 年 4 月 12 日更新:修订了图 1和表 1,澄清了 LLM 的发布日期。
- • 2023 年 4 月 16 日更新:添加了第 2.2节关于 GPT 系列模型的技术演进。
- • 2023 年 4 月 24 日更新:添加了关于扩展法则的讨论,为出现涌现能力的模型尺寸添加了一些解释(第 2.1节) ; 在图 4中添加了不同架构的注意力模式的示意图,并在表 4中添加了详细的公式。
- • 2023 年 4 月 25 日更新:修订了图表中的一些拷贝错误。
- • 2023 年 4 月 27 日更新:在第 5.3节中添加了高效微调。
- • 2023 年 4 月 28 日更新:修订了第 5.3节。
- • 2023 年 5 月 7 日更新:修订了表 1、表 2和一些细节。
- 计划内容
- 我们将定期将新内容加入本篇文献综述中,使其更加完整并切合最新情况。 在这里, 我们列出了几个可能出现在下一主要版本中的主题
- (1) 从 GPT-1 到 ChatGPT 的技术演进 (部分完成)
- (2) 基于 LLaMA 的微调 (如 Alpaca)
- (3) 轻量级微调策略(已完成)
- (4)模型细节的详细公式(已完成) 。
- 我们将定期将新内容加入本篇文献综述中,使其更加完整并切合最新情况。 在这里, 我们列出了几个可能出现在下一主要版本中的主题
- 致谢
- 作者们感谢和 Yutao Zhu 对本文的校对。自本文首次发布以来,我们收到了许多来自读者的宝贵意见。我们真诚地感谢给我们邮件并提出建设性建议和评论的读者:Tyler Suard, Damai Dai, Liang Ding, Stella Biderman, Kevin Gray, and Jay Alammar.
- 参考文献
-
[1] S. Pinker, The Language Instinct: How the Mind Creates Language. Brilliance Audio; Unabridged edition, 2014.
-
[2] M. D. Hauser, N. Chomsky, and W. T. Fitch, “The faculty of language: what is it, who has it, and how did it evolve?” science, vol. 298, no. 5598, pp. 1569–1579, 2002.
-
[3] A. M. Turing, “Computing machinery and intelligence,”Mind, vol. LIX, no. 236, pp. 433–460, 1950.
-
[4] F. Jelinek, Statistical Methods for Speech Recognition.MIT Press, 1998.
-
[5] J. Gao and C. Lin, “Introduction to the special issue on statistical language modeling,” ACM Trans. Asian Lang. Inf. Process., vol. 3, no. 2, pp. 87–93, 2004.
-
[6] R. Rosenfeld, “Two decades of statistical language modeling: Where do we go from here?” Proceedings of the IEEE, vol. 88, no. 8, pp. 1270–1278, 2000.
-
[7] A. Stolcke, “Srilm-an extensible language modeling toolkit,” in Seventh international conference on spoken language processing, 2002.
-
[8] X. Liu and W. B. Croft, “Statistical language modeling for information retrieval,” Annu. Rev. Inf. Sci. Technol., vol. 39, no. 1, pp. 1–31, 2005.
-
[9] C. Zhai, Statistical Language Models for Information Retrieval, ser. Synthesis Lectures on Human Language Technologies.
-
Morgan & Claypool Publishers, 2008.
-
[10] S. M. Thede and M. P. Harper, “A second-order hidden markov model for part-of-speech tagging,” in 27th Annual Meeting of the Association for Computational Linguistics, University of Maryland, College Park, Maryland, USA, 20-26 June 1999, R. Dale and K. W. Church, Eds.
-
ACL, 1999, pp. 175–182.
-
[11] L. R. Bahl, P. F. Brown, P. V. de Souza, and R. L. Mercer, “A tree-based statistical language model for natural language speech recognition,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 37, no. 7, pp. 1001–1008, 1989.
-
[12] T. Brants, A. C. Popat, P. Xu, F. J. Och, and J. Dean, “Large language models in machine translation,” in EMNLP-CoNLL 2007, Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, June 28-30, 2007, Prague, Czech Republic, J. Eisner, Ed.
-
ACL, 2007, pp. 858–867.
-
[13] S. M. Katz, “Estimation of probabilities from sparse data for the language model component of a speech recognizer,” IEEE Trans. Acoust. Speech Signal Process., vol. 35, no. 3, pp. 400–401, 1987.
-
[14] W. A. Gale and G. Sampson, “Good-turing frequency estimation without tears,” J. Quant. Linguistics, vol. 2, no. 3, pp. 217–237, 1995.
-
[15] Y. Bengio, R. Ducharme, P. Vincent, and C. Janvin, “A neural probabilistic language model,” J. Mach. Learn.
-
Res., vol. 3, pp. 1137–1155, 2003.
-
[16] T. Mikolov, M. Karafiát, L. Burget, J. Cernocký, and S. Khudanpur, “Recurrent neural network based language model,” in INTERSPEECH 2010, 11th Annual Conference of the International Speech Communication Association, Makuhari, Chiba, Japan, September 26-30, 2010, T. Kobayashi, K. Hirose, and S. Nakamura, Eds.
-
ISCA, 2010, pp. 1045–1048.-
-
[17] S. Kombrink, T. Mikolov, M. Karafiát, and L. Burget, “Recurrent neural network based language modeling in meeting recognition,” in INTERSPEECH 2011, 12th Annual Conference of the International Speech Communication Association, Florence, Italy, August 27-31, 2011.
-
ISCA, 2011, pp. 2877–2880.
-
[18] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and P. P. Kuksa, “Natural language processing (almost) from scratch,” J. Mach. Learn. Res., vol. 12, pp. 2493–2537, 2011.
-
[19] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed representations of words and phrases and their compositionality,” in Advances in Neural Information Processing Systems 26: 27th Annual Conference on Neural Information Processing Systems 2013. Proceedings of a meeting held December 5-8, 2013, Lake Tahoe, Nevada, United States, C. J. C. Burges, L. Bottou, Z. Ghahramani, and K. Q. Weinberger, Eds., 2013, pp. 3111–3119.
-
[20] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word representations in vector space,” in 1st International Conference on Learning Representations, ICLR 2013, Scottsdale, Arizona, USA, May 2-4, 2013, Workshop Track Proceedings, Y. Bengio and Y. LeCun, Eds., 2013.
-
[21] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and L. Zettlemoyer, “Deep contextualized word representations,” in Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2018, New Orleans, Louisiana, USA, June 1-6, 2018, Volume 1 (Long Papers), M. A. Walker, H. Ji, and A. Stent, Eds. Association for Computational Linguistics, 2018, pp. 2227–2237.
-
[22] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, 2017, pp. 5998–6008.
-
[23] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: pre-training of deep bidirectional transformers for language understanding,” in Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis,MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), J. Burstein, C. Doran, and T. Solorio, Eds.
-
Association for Computational Linguistics, 2019, pp.
-
4171–4186.-
-
[24] M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed, O. Levy, V. Stoyanov, and L. Zettlemoyer, “BART: denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension,” in Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, ACL 2020, Online, July 5-10, 2020, 2020, pp. 7871–7880.
-
[25] W. Fedus, B. Zoph, and N. Shazeer, “Switch transformers: Scaling to trillion parameter models with simple and eficient sparsity,” J. Mach. Learn. Res, pp. 1–40, 2021.
-
[26] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever et al., “Language models are unsupervised multitask learners,” OpenAI blog, p. 9, 2019.
-
[27] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer, and V. Stoyanov, “Roberta: A robustly optimized BERT pretraining approach,” CoRR, vol. abs/1907.11692, 2019.
-
[28] V. Sanh, A. Webson, C. Raffel, S. H. Bach, L. Sutawika, Z. Alyafeai, A. Chafin, A. Stiegler, A. Raja, M. Dey, M. S. Bari, C. Xu, U. Thakker, S. S. Sharma, E. Szczechla, T. Kim, G. Chhablani, N. V. Nayak, D. Datta, J. Chang, M. T. Jiang, H. Wang, M. Manica, S. Shen, Z. X. Yong, H. Pandey, R. Bawden, T. Wang, T. Neeraj, J. Rozen, A. Sharma, A. Santilli, T. Févry, J. A. Fries, R. Teehan, T. L. Scao, S. Biderman, L. Gao, T. Wolf, and A. M. Rush, “Multitask prompted training enables zero-shot task generalization,” in The Tenth International Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022.
-
OpenReview.net, 2022.
-
[29] T. Wang, A. Roberts, D. Hesslow, T. L. Scao, H. W.
-
Chung, I. Beltagy, J. Launay, and C. Raffel, “What language model architecture and pretraining objective works best for zero-shot generalization?” in International Conference on Machine Learning, ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA, ser. Proceedings of Machine Learning Research, vol. 162, 2022, pp. 22 964–22 984.
-
[30] J. Kaplan, S. McCandlish, T. Henighan, T. B. Brown, B. Chess, R. Child, S. Gray, A. Radford, J. Wu, and D. Amodei, “Scaling laws for neural language models,”CoRR, vol. abs/2001.08361, 2020.
-
[31] M. Shanahan, “Talking about large language models,”CoRR, vol. abs/2212.03551, 2022.-
-
[32] J. Wei, X. Wang, D. Schuurmans, M. Bosma, E. H.
-
Chi, Q. Le, and D. Zhou, “Chain of thought prompting elicits reasoning in large language models,” CoRR, vol.
-
abs/2201.11903, 2022.
-
[33] J. Hoffmann, S. Borgeaud, A. Mensch, E. Buchatskaya, T. Cai, E. Rutherford, D. de Las Casas, L. A. Hendricks, J. Welbl, A. Clark, T. Hennigan, E. Noland, K. Millican, G. van den Driessche, B. Damoc, A. Guy, S. Osindero, K. Simonyan, E. Elsen, J. W. Rae, O. Vinyals, and L. Sifre, “Training compute-optimal large language models,” vol. abs/2203.15556, 2022.
-
[34] R. Taylor, M. Kardas, G. Cucurull, T. Scialom, A. Hartshorn, E. Saravia, A. Poulton, V. Kerkez, and R. Stojnic, “Galactica: A large language model for science,” CoRR, vol. abs/2211.09085, 2022.
-
[35] P. Liu, W. Yuan, J. Fu, Z. Jiang, H. Hayashi, and G. Neubig, “Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing,” ACM Comput. Surv., pp. 195:1–195:35, 2023.
-
[36] C. Zhou, Q. Li, C. Li, J. Yu, Y. Liu, G. Wang, K. Zhang, C. Ji, Q. Yan, L. He, H. Peng, J. Li, J. Wu, Z. Liu, P. Xie, C. Xiong, J. Pei, P. S. Yu, and L. Sun, “A comprehensive survey on pretrained foundation models: A history from BERT to chatgpt,” CoRR, vol. abs/2302.09419, 2023.
-
[37] X. Han, Z. Zhang, N. Ding, Y. Gu, X. Liu, Y. Huo, J. Qiu, Y. Yao, A. Zhang, L. Zhang, W. Han, M. Huang, Q. Jin, Y. Lan, Y. Liu, Z. Liu, Z. Lu, X. Qiu, R. Song, J. Tang, J. Wen, J. Yuan, W. X. Zhao, and J. Zhu, “Pretrained models: Past, present and future,” AI Open, vol. 2, pp. 225–250, 2021.
-
[38] X. Qiu, T. Sun, Y. Xu, Y. Shao, N. Dai, and X. Huang, “Pre-trained models for natural language processing: A survey,” CoRR, vol. abs/2003.08271, 2020.
-
[39] S. Altman, “Planning for agi and beyond,” OpenAI Blog, February 2023.
-
[40] S. Bubeck, V. Chandrasekaran, R. Eldan, J. Gehrke, E. Horvitz, E. Kamar, P. Lee, Y. T. Lee, Y. Li, S. Lundberg, H. Nori, H. Palangi, M. T. Ribeiro, and Y. Zhang, “Sparks of artificial general intelligence: Early experiments with gpt-4,” vol. abs/2303.12712, 2023.
-
[41] S. Huang, L. Dong, W. Wang, Y. Hao, S. Singhal, S. Ma, T. Lv, L. Cui, O. K. Mohammed, B. Patra, Q. Liu, K. Aggarwal, Z. Chi, J. Bjorck, V. Chaudhary, S. Som, X. Song, and F. Wei, “Language is not all you need: Aligning perception with language models,” CoRR, vol.abs/2302.14045, 2023.-
-
[42] Y. Cao, S. Li, Y. Liu, Z. Yan, Y. Dai, P. S. Yu, and L. Sun, “A comprehensive survey of ai-generated content (aigc): A history of generative ai from gan to chatgpt,” arXiv preprint arXiv:2303.04226, 2023.
-
[43] D. Driess, F. Xia, M. S. Sajjadi, C. Lynch, A. Chowdhery, B. Ichter, A. Wahid, J. Tompson, Q. Vuong, T. Yu et al., “Palm-e: An embodied multimodal language model,” arXiv preprint arXiv:2303.03378, 2023.
-
[44] C. Wu, S. Yin, W. Qi, X. Wang, Z. Tang, and N. Duan, “Visual chatgpt: Talking, drawing and editing with visual foundation models,” arXiv preprint arXiv:2303.04671, 2023.
-
[45] OpenAI, “Gpt-4 technical report,” OpenAI, 2023.
-
[46] Y. Fu, H. Peng, and T. Khot, “How does gpt obtain its ability? tracing emergent abilities of language models to their sources,” Yao Fu’s Notion, Dec 2022.
-
[47] J. Wei, Y. Tay, R. Bommasani, C. Raffel, B. Zoph, S. Borgeaud, D. Yogatama, M. Bosma, D. Zhou, D. Metzler, E. H. Chi, T. Hashimoto, O. Vinyals, P. Liang, J. Dean, and W. Fedus, “Emergent abilities of large language models,” CoRR, vol. abs/2206.07682, 2022.
-
[48] J. Li, T. Tang, W. X. Zhao, and J. Wen, “Pretrained language model for text generation: A survey,” in Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI 2021, Virtual Event / Montreal, Canada, 19-27 August 2021, Z. Zhou, Ed.
-
ijcai.org, 2021, pp. 4492–4499.
-
[49] P. Lu, L. Qiu, W. Yu, S. Welleck, and K. Chang, “A survey of deep learning for mathematical reasoning,”CoRR, vol. abs/2212.10535, 2022.
-
[50] Q. Dong, L. Li, D. Dai, C. Zheng, Z. Wu, B. Chang, X. Sun, J. Xu, L. Li, and Z. Sui, “A survey for in-context learning,” CoRR, vol. abs/2301.00234, 2023.
-
[51] J. Huang and K. C. Chang, “Towards reasoning in large language models: A survey,” CoRR, vol.
-
abs/2212.10403, 2022.
-
[52] S. Qiao, Y. Ou, N. Zhang, X. Chen, Y. Yao, S. Deng, C. Tan, F. Huang, and H. Chen, “Reasoning with language model prompting: A survey,” CoRR, vol.
-
abs/2212.09597, 2022.
-
[53] J. Zhou, P. Ke, X. Qiu, M. Huang, and J. Zhang, “Chatgpt: potential, prospects, and limitations,” in Frontiers of Information Technology & Electronic Engineering, 2023, pp. 1–6.
-
[54] W. X. Zhao, J. Liu, R. Ren, and J. Wen, “Dense text retrieval based on pretrained language models: A survey,” CoRR, vol. abs/2211.14876, 2022.-
-
[55] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei, “Language models are few-shot learners,” in Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, Eds., 2020.
-
[56] A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts, P. Barham, H. W. Chung, C.
-
Sutton, S.
-
Gehrmann, P.
-
Schuh, K.
-
Shi, S. Tsvyashchenko, J. Maynez, A. Rao, P. Barnes, Y. Tay, N. Shazeer, V. Prabhakaran, E. Reif, N. Du, B. Hutchinson, R. Pope, J. Bradbury, J. Austin, M. Isard, G. Gur-Ari, P. Yin, T. Duke, A. Levskaya, S. Ghemawat, S. Dev, H. Michalewski, X. Garcia, V. Misra, K. Robinson, L. Fedus, D. Zhou, D. Ippolito, D. Luan, H. Lim, B. Zoph, A. Spiridonov, R. Sepassi, D. Dohan, S. Agrawal, M. Omernick, A. M. Dai, T. S. Pillai, M. Pellat, A. Lewkowycz, E. Moreira, R. Child, O. Polozov, K. Lee, Z. Zhou, X. Wang, B. Saeta, M. Diaz, O. Firat, M. Catasta, J. Wei, K. Meier-Hellstern, D. Eck, J. Dean, S. Petrov, and N. Fiedel, “Palm: Scaling language modeling with pathways,” CoRR, vol.
-
abs/2204.02311, 2022.
-
[57] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M. Lachaux, T. Lacroix, B. Rozière, N. Goyal, E. Hambro, F. Azhar, A. Rodriguez, A. Joulin, E. Grave, and G. Lample, “Llama: Open and eficient foundation language models,” CoRR, 2023.
-
[58] B. A. Huberman and T. Hogg, “Phase transitions in artificial intelligence systems,” Artificial Intelligence, vol. 33, no. 2, pp. 155–171, 1987.
-
[59] J. W. Rae, S. Borgeaud, T. Cai, K. Millican, J. Hoffmann, H. F. Song, J. Aslanides, S. Henderson, R. Ring, S. Young, E. Rutherford, T. Hennigan, J. Menick, A. Cassirer, R. Powell, G. van den Driessche, L. A.
-
Hendricks, M. Rauh, P. Huang, A. Glaese, J. Welbl, S. Dathathri, S. Huang, J. Uesato, J. Mellor, I. Higgins, A. Creswell, N. McAleese, A. Wu, E. Elsen, S. M.
-
Jayakumar, E. Buchatskaya, D. Budden, E. Suther-land, K. Simonyan, M. Paganini, L. Sifre, L. Martens, X. L. Li, A. Kuncoro, A. Nematzadeh, E. Gribovskaya, D. Donato, A. Lazaridou, A. Mensch, J. Lespiau, M. Tsimpoukelli, N. Grigorev, D. Fritz, T. Sottiaux, M. Pajarskas, T. Pohlen, Z. Gong, D. Toyama, C. de Masson d’Autume, Y. Li, T. Terzi, V. Mikulik, I. Babuschkin, A. Clark, D. de Las Casas, A. Guy, C. Jones, J. Bradbury, M. J. Johnson, B. A. Hechtman, L. Weidinger, I. Gabriel, W. S. Isaac, E. Lockhart, S. Osindero, L. Rimell, C. Dyer, O. Vinyals, K. Ayoub, J. Stanway, L. Bennett, D. Hassabis, K. Kavukcuoglu, and G. Irving, “Scaling language models: Methods, analysis & insights from training gopher,” CoRR, vol.
-
abs/2112.11446, 2021.-
-
[60] D. Dai, Y. Sun, L. Dong, Y. Hao, Z. Sui, and F. Wei, “Why can GPT learn in-context? language models secretly perform gradient descent as meta-optimizers,”CoRR, vol. abs/2212.10559, 2022.
-
[61] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. L. Wainwright, P. Mishkin, C. Zhang, S. Agarwal, K. Slama, A. Ray, J. Schulman, J. Hilton, F. Kelton, L. Miller, M. Simens, A. Askell, P. Welinder, P. F. Christiano, J. Leike, and R. Lowe, “Training language models to follow instructions with human feedback,” CoRR, vol.
-
abs/2203.02155, 2022.
-
[62] J. Wei, M. Bosma, V. Y. Zhao, K. Guu, A. W. Yu, B. Lester, N. Du, A. M. Dai, and Q. V. Le, “Finetuned language models are zero-shot learners,” in The Tenth International Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022.
-
OpenReview.net, 2022.
-
[63] R. Thoppilan, D. D. Freitas, J. Hall, N. Shazeer, A. Kulshreshtha, H. Cheng, A. Jin, T. Bos, L. Baker, Y. Du, Y. Li, H. Lee, H. S. Zheng, A. Ghafouri, M. Menegali, Y. Huang, M. Krikun, D. Lepikhin, J. Qin, D. Chen, Y. Xu, Z. Chen, A. Roberts, M. Bosma, Y. Zhou, C. Chang, I. Krivokon, W. Rusch, M. Pickett, K. S.
-
Meier-Hellstern, M. R. Morris, T. Doshi, R. D. Santos, T. Duke, J. Soraker, B. Zevenbergen, V. Prabhakaran, M. Diaz, B. Hutchinson, K. Olson, A. Molina, E. Hoffman-John, J. Lee, L. Aroyo, R. Rajakumar, A. Butryna, M. Lamm, V. Kuzmina, J. Fenton, A. Cohen, R. Bernstein, R. Kurzweil, B. Aguera-Arcas, C. Cui, M. Croak, E. H. Chi, and Q. Le, “Lamda: Language models for dialog applications,” CoRR, vol. abs/2201.08239, 2022.
-
[64] H. W. Chung, L. Hou, S. Longpre, B. Zoph, Y. Tay, W. Fedus, E. Li, X. Wang, M. Dehghani, S. Brahma,A. Webson, S. S. Gu, Z. Dai, M. Suzgun, X. Chen, A. Chowdhery, S. Narang, G. Mishra, A. Yu, V. Y.
-
Zhao, Y. Huang, A. M. Dai, H. Yu, S. Petrov, E. H.
-
Chi, J. Dean, J. Devlin, A. Roberts, D. Zhou, Q. V.
-
Le, and J. Wei, “Scaling instruction-finetuned language models,” CoRR, vol. abs/2210.11416, 2022.-
-
[65] J. Rasley, S. Rajbhandari, O. Ruwase, and Y. He, “Deepspeed: System optimizations enable training deep learning models with over 100 billion parameters,” in KDD, 2020, pp. 3505–3506.
-
[66] M. Shoeybi, M. Patwary, R. Puri, P. LeGresley, J. Casper, and B. Catanzaro, “Megatron-lm: Training multi-billion parameter language models using model parallelism,” CoRR, vol. abs/1909.08053, 2019.
-
[67] D. Narayanan, M. Shoeybi, J. Casper, P. LeGresley, M. Patwary, V. Korthikanti, D. Vainbrand, P. Kashinkunti, J. Bernauer, B. Catanzaro, A. Phanishayee, and M. Zaharia, “Eficient large-scale language model training on GPU clusters using megatron-lm,” in International Conference for High Performance Computing, Networking, Storage and Analysis, SC 2021, St.
-
Louis, Missouri, USA, November 14-19, 2021.
-
ACM, 2021, p. 58.
-
[68] V. Korthikanti, J. Casper, S. Lym, L. McAfee, M. Andersch, M. Shoeybi, and B. Catanzaro, “Reducing activation recomputation in large transformer models,”CoRR, vol. abs/2205.05198, 2022.
-
[69] T. L. Scao, A. Fan, C. Akiki, E. Pavlick, S. Ilic, D. Hesslow, R. Castagné, A. S. Luccioni, F. Yvon, M. Gallé, J. Tow, A. M. Rush, S. Biderman, A. Webson, P. S.
-
Ammanamanchi, T. Wang, B. Sagot, N. Muennighoff, A. V. del Moral, O. Ruwase, R. Bawden, S. Bekman, A. McMillan-Major, I. Beltagy, H. Nguyen, L. Saulnier, S. Tan, P. O. Suarez, V. Sanh, H. Laurençon, Y. Jernite, J. Launay, M. Mitchell, C. Raffel, A. Gokaslan, A. Simhi, A. Soroa, A. F. Aji, A. Alfassy, A. Rogers, A. K. Nitzav, C. Xu, C. Mou, C. Emezue, C. Klamm, C. Leong, D. van Strien, D. I. Adelani, and et al., “BLOOM: A 176b-parameter open-access multilingual language model,” CoRR, vol. abs/2211.05100, 2022.
-
[70] P. F. Christiano, J. Leike, T. B. Brown, M. Martic, S. Legg, and D. Amodei, “Deep reinforcement learning from human preferences,” in Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, I. Guyon, U. von Luxburg, S. Bengio, H. M. Wallach, R. Fergus, S. V. N.Vishwanathan, and R. Garnett, Eds., 2017, pp. 4299–4307.-
-
[71] T. Schick, J. Dwivedi-Yu, R. Dessì, R. Raileanu, M.
-
Lomeli, L.
-
Zettlemoyer, N.
-
Cancedda, and T. Scialom, “Toolformer: Language models can teach themselves to use tools,” CoRR, vol. abs/2302.04761, 2023.
-
[72] R. Nakano, J. Hilton, S. Balaji, J. Wu, L. Ouyang, C. Kim, C. Hesse, S. Jain, V. Kosaraju, W. Saunders, X. Jiang, K. Cobbe, T. Eloundou, G. Krueger, K. Button, M. Knight, B. Chess, and J. Schulman, “Webgpt: Browser-assisted question-answering with human feedback,” CoRR, vol. abs/2112.09332, 2021.
-
[73] A. Radford, R. Józefowicz, and I. Sutskever, “Learning to generate reviews and discovering sentiment,” CoRR, vol. abs/1704.01444, 2017.
-
[74] A. Radford, K. Narasimhan, T. Salimans, I. Sutskever et al., “Improving language understanding by generative pre-training,” 2018.
-
[75] B. McCann, N. S. Keskar, C. Xiong, and R. Socher, “The natural language decathlon: Multitask learning as question answering,” CoRR, vol. abs/1806.08730, 2018.
-
[76] Y. Zhang, S. Sun, M. Galley, Y. Chen, C. Brockett, X. Gao, J. Gao, J. Liu, and B. Dolan, “DIALOGPT : Large-scale generative pre-training for conversational response generation,” in Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: System Demonstrations, ACL 2020, Online, July 510, 2020, A. Celikyilmaz and T. Wen, Eds. Association for Computational Linguistics, 2020, pp. 270–278.
-
[77] D. Ham, J. Lee, Y. Jang, and K. Kim, “End-to-end neural pipeline for goal-oriented dialogue systems using GPT-2,” in Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, ACL 2020, Online, July 5-10, 2020. Association for Computational Linguistics, 2020, pp. 583–592.
-
[78] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P.
-
de Oliveira Pinto, J. Kaplan, H. Edwards, Y. Burda, N. Joseph, G. Brockman, A. Ray, R. Puri, G. Krueger, M. Petrov, H. Khlaaf, G. Sastry, P. Mishkin, B. Chan, S. Gray, N. Ryder, M. Pavlov, A. Power, L. Kaiser, M. Bavarian, C. Winter, P. Tillet, F. P. Such, D. Cummings, M. Plappert, F. Chantzis, E. Barnes, A. HerbertVoss, W. H. Guss, A. Nichol, A. Paino, N. Tezak, J. Tang, I. Babuschkin, S. Balaji, S. Jain, W. Saunders, C. Hesse, A. N. Carr, J. Leike, J. Achiam, V. Misra, E. Morikawa, A. Radford, M. Knight,M. Brundage, M. Murati, K. Mayer, P. Welinder, B. McGrew, D. Amodei, S. McCandlish, I. Sutskever, and W. Zaremba, “Evaluating large language models trained on code,” CoRR, vol. abs/2107.03374, 2021.-
-
[79] I. Drori, S. Tran, R. Wang, N. Cheng, K. Liu, L. Tang, E. Ke, N. Singh, T. L. Patti, J. Lynch, A. Shporer, N. Verma, E. Wu, and G. Strang, “A neural network solves and generates mathematics problems by program synthesis: Calculus, differential equations, linear algebra, and more,” CoRR, vol. abs/2112.15594, 2021.
-
[80] A. Neelakantan, T. Xu, R. Puri, A. Radford, J. M.
-
Han, J. Tworek, Q. Yuan, N. Tezak, J. W. Kim, C. Hallacy, J. Heidecke, P. Shyam, B. Power, T. E.
-
Nekoul, G. Sastry, G. Krueger, D. Schnurr, F. P.
-
Such, K. Hsu, M. Thompson, T. Khan, T. Sherbakov, J. Jang, P. Welinder, and L. Weng, “Text and code embeddings by contrastive pre-training,” CoRR, vol.
-
abs/2201.10005, 2022.
-
[81] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy optimization algorithms,”arXiv preprint arXiv:1707.06347, 2017.
-
[8
-
- 尾声: