题目连接:
http://acm.tzc.edu.cn/acmhome/problemdetail.do?&method=showdetail&id=3345
题目类型:
数论 - 积性函数 - 因子
数据结构:
无
思路分析:
------------------------------------------------------------------------------
由于 gcd( i, m * n ) = gcd( i, m ) * gcd( i, n ) m, n 互质, 所以 gcd 为积性函数
令f( n ) = ∑ gcd( i, N ), ( i <= i <= N )
得到 f( n ) = sum( p * phi( n / p ) ); [ phi() 为欧拉函数 ]
由此推导 f( p ^ r ) = r * ( p ^ r - p ^ ( r - 1 ) ) + p ^ r;
吧 n 素因子分解 成 ( p1 ^ k1 ) * ( p2 ^ k2 ) * ( p3 ^ k3) ........
由积性函数得到
f( n ) = f( p1 ^ k1 ) * f( p2 ^ k2 ).........
再套用上面的公式即可
证明:
略
源代码:
#include <iostream>
#include <stdio.h>
using namespace std;
typedef __int64 int64;
int main()
{
int64 n;
while( scanf( "%I64d", &n ) != EOF )
{
int64 i, x = 1, r = 0, snt = 1;
for( i = 2; i * i <= n; i ++ )
{
if( n % i == 0 )
{
x = 1; r = 0;
do
{
n /= i;
x *= i;
r ++;
} while( n % i == 0 );
snt *= ( r + 1 ) * x - r * x / i;
}
}
printf( "%I64d\n", n > 1 ? snt * ( 2 * n - 1 ) : snt );
}
return 0;
}