TOJ 3345


题目连接:

http://acm.tzc.edu.cn/acmhome/problemdetail.do?&method=showdetail&id=3345


题目类型:

数论 - 积性函数 - 因子


数据结构:


思路分析:

------------------------------------------------------------------------------

由于 gcd( i, m * n ) = gcd( i, m ) * gcd( i, n )  m, n 互质, 所以 gcd 为积性函数

令f( n ) = ∑ gcd( i, N ), ( i <= i <= N )

得到 f( n ) = sum( p * phi( n / p ) ); [ phi() 为欧拉函数 ]


由此推导 f( p ^ r ) = r * ( p ^ r - p ^ ( r - 1 ) ) + p ^ r;

吧 n 素因子分解 成 ( p1 ^ k1 ) * ( p2 ^ k2 ) * ( p3 ^ k3) ........

由积性函数得到

f( n ) = f( p1 ^ k1 ) * f(  p2 ^ k2 ).........

再套用上面的公式即可


证明:


源代码:

#include <iostream>
#include <stdio.h>

using namespace std;

typedef __int64 int64;

int main()
{
	int64 n;
	
	while( scanf( "%I64d", &n ) != EOF )
	{
		int64 i, x = 1, r = 0, snt = 1;
	
		for( i = 2; i * i <= n; i ++ )
		{
			if( n % i == 0 )
			{
				x = 1; r = 0;
				
				do
				{
					n /= i;
					x *= i;
					r ++;
					
				} while( n % i == 0 );
				
				snt *= ( r + 1 ) * x - r * x / i;
			}
		}
		
		printf( "%I64d\n", n > 1 ? snt * ( 2 * n - 1 ) : snt );
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值