841、有 N 个房间,开始时你位于 0 号房间。每个房间有不同的号码:0,1,2,...,N-1,并且房间里可能有一些钥匙能使你进入下一个房间。
在形式上,对于每个房间 i 都有一个钥匙列表 rooms[i],每个钥匙 rooms[i][j] 由 [0,1,...,N-1] 中的一个整数表示,其中 N = rooms.length。 钥匙 rooms[i][j] = v 可以打开编号为 v 的房间。
最初,除 0 号房间外的其余所有房间都被锁住。
你可以自由地在房间之间来回走动。
如果能进入每个房间返回 true,否则返回 false。
示例 1:
输入: [[1],[2],[3],[]]
输出: true
解释:
我们从 0 号房间开始,拿到钥匙 1。
之后我们去 1 号房间,拿到钥匙 2。
然后我们去 2 号房间,拿到钥匙 3。
最后我们去了 3 号房间。
由于我们能够进入每个房间,我们返回 true。示例 2:
输入:[[1,3],[3,0,1],[2],[0]]
输出:false
解释:我们不能进入 2 号房间。提示:
- 1 <= rooms.length <= 1000
- 0 <= rooms[i].length <= 1000
- 所有房间中的钥匙数量总计不超过 3000。
// BFS, 有向图
class Solution {
public:
bool canVisitAllRooms(vector<vector<int>>& rooms) {
int n = rooms.size();
vector<bool> mark(n, false);
queue<int> q;
q.push(0); mark[0] = true;
int cnt = 1;
while(!q.empty()){
int cur = q.front();
q.pop();
for(auto &i:rooms[cur]){
if(!mark[i]){
q.push(i); mark[i] = true;
cnt++;
}
}
}
if(cnt == n) return true;
else return false;
}
};
结果:
执行用时:16 ms, 在所有 C++ 提交中击败了87.48% 的用户
内存消耗:9.7 MB, 在所有 C++ 提交中击败了100.00% 的用户
图像建模 :将不熟悉的转为,并查集找连通区域!
959、在由 1 x 1 方格组成的 N x N 网格 grid 中,每个 1 x 1 方块由 /、\ 或空格构成。这些字符会将方块划分为一些共边的区域。
(请注意,反斜杠字符是转义的,因此 \ 用 "\\" 表示。)。
返回区域的数目。
示例 3:
输入:
[
"\\/",
"/\\"
]
输出:4
解释:(回想一下,因为 \ 字符是转义的,所以 "\\/" 表示 \/,而 "/\\" 表示 /\。)
2x2 网格如下:
(1)并查集思想。
- 初始,四周一圈的格点连通(红色线),而内部格点孤立,只有一个区域。
- 逐格子添加斜杠。首先添加绿色斜杠,连接 0 和 5 格点,此时两个点不在一个连通块,没有产生区域。
- 然后添加蓝色斜杠,连接 2 和 5 格点,两个点在同一个连通块里,产生了一个新的区域(灰色部分)。
- 遍历所有斜杠。

先确定左上角p = (n + 1) * i + j,再根据‘/’ 还是‘\\’ , 确定v1,v2,找二者所在集合,若同集合,则分割数加一。
// 图像建模,并查集
class Solution {
public:
vector<int> vec;
int findRoot(int x){
if(vec[x] == -1) return x;
else{
int t = findRoot(vec[x]);
vec[x] = t;
return t;
}
}
int regionsBySlashes(vector<string>& grid) {
int n = grid.size();
vec.resize((n + 1) * (n + 1), -1); // 每个点初始化为 -1
// 初始化四边为一个集合,根为0
for(int i = 0; i < n + 1; i++)
vec[i] = vec[(n + 1) * n + i] = vec[i * (n + 1)] = vec[(n + 1) * (i + 1) - 1] = 0;
vec[0] = -1;
int ans = 1, p, v1, v2;
for(int i = 0; i < n; i++){
string str = grid[i];
for(int j = 0; j < n; j++){
p = (n + 1) * i + j; // 每个格子左上角
if(str[j] == '/'){
v1 = p + 1;
v2 = p + n + 1;
}else if(str[j] == '\\'){
v1 = p;
v2 = p + n + 1 + 1;
}else continue;
v1 = findRoot(v1);
v2 = findRoot(v2);
if(v1 == v2) ans++;
else vec[max(v1, v2)] = min(v1, v2);
}
}
return ans;
}
};
结果:
执行用时:8 ms, 在所有 C++ 提交中击败了94.08% 的用户
内存消耗:9.8 MB, 在所有 C++ 提交中击败了100.00% 的用户
(2)dfs
首先将每个格子划分成 3 x 3 的更小的网格,然后对角线上填充 1 来表示斜杠,其余地方全部填充 0 。
那么问题就转化为了求一个 3N x 3N 的网格上的 0 的连通块一共有几块,用普通的 dfs 搜一遍。

// dfs n*n --> 3n*3n,查0的连通区域数
class Solution {
public:
vector<vector<int>> vec;
int n;
int step[4][2] = {{0,1},{0,-1},{1,0},{-1,0}};
void dfs(int x, int y){ // 0 1 遍历后,将0变2
vec[x][y] = 2;
for(int i = 0; i < 4; i++){
int nx = x + step[i][0];
int ny = y + step[i][1];
if(nx >= 0 && nx < 3 * n && ny >= 0 && ny < 3 * n && vec[nx][ny] == 0) dfs(nx, ny);
}
}
int regionsBySlashes(vector<string>& grid) {
n = grid.size();
vec.resize(3 * n);
for(auto &i:vec) i.resize(3 * n, 0);
// 3n * 3n 网格初始胡
for(int i = 0; i < n; i++){
for(int j = 0; j < n; j++){
if(grid[i][j] == '\\') vec[3*i][3*j] = vec[3*i+1][3*j+1] = vec[3*i+2][3*j+2] = 1;
else if(grid[i][j] == '/') vec[3*i][3*j+2] = vec[3*i+1][3*j+1] = vec[3*i+2][3*j] = 1;
}
}
int ans = 0;
for(int i = 0; i < 3 * n; i++)
for(int j = 0; j < 3 * n; j++)
if(vec[i][j] == 0) ans++, dfs(i, j);
return ans;
}
};
结果:
执行用时:32 ms, 在所有 C++ 提交中击败了25.09% 的用户
内存消耗:11.6 MB, 在所有 C++ 提交中击败了100.00% 的用户
990、给定一个由表示变量之间关系的字符串方程组成的数组,每个字符串方程 equations[i] 的长度为 4,并采用两种不同的形式之一:"a==b" 或 "a!=b"。在这里,a 和 b 是小写字母(不一定不同),表示单字母变量名。
只有当可以将整数分配给变量名,以便满足所有给定的方程时才返回 true,否则返回 false。
示例 1:
输入:["a==b","b!=a"]
输出:false
解释:如果我们指定,a = 1 且 b = 1,那么可以满足第一个方程,但无法满足第二个方程。没有办法分配变量同时满足这两个方程。
建模,并查集。a!=b式子,保存a,b入数组,用于后续判断是否成立。a==b,调用unite函数,合并两个集合。
在遍历所有等式后,对不等式进行判断,a,b是否属于同一个集合,仅当findRoot(a)==findRoot(b),结果为false。
// 建模
// 并查集
class Solution {
public:
vector<int> tree;
int findRoot(int x){
if(tree[x] == -1) return x;
else {
int t = findRoot(tree[x]);
tree[x] = t;
return t;
}
}
void unite(int x, int y){
x = findRoot(x);
y = findRoot(y);
if(x != y) tree[x] = y;
}
bool equationsPossible(vector<string>& equations) {
tree.resize(30, -1);
vector<pair<int, int>> vec;
for(auto &str:equations){
if(str[1] == '!') vec.push_back({str[0] - 'a', str[3] - 'a'});
else unite(str[0] - 'a', str[3] - 'a');
}
for(auto &i:vec){
int x = findRoot(i.first);
int y = findRoot(i.second);
if(x == y) return false;
}
return true;
}
};
结果:
执行用时:4 ms, 在所有 C++ 提交中击败了98.52% 的用户
内存消耗:11.3 MB, 在所有 C++ 提交中击败了50.00% 的用户
这篇博客通过LeetCode的841和959题,介绍了如何使用并查集解决房间解锁问题和由斜杠划分区域的问题,通过实例解析并查集的应用和建模过程,展示了解题思路和C++实现的性能优化。


被折叠的 条评论
为什么被折叠?



