Python-科学计算的方法

本文介绍了Python在科学计算中的库和方法,包括Scipy、nltk、Requests、BeautifulSoup和正则表达式等。讨论了DataFrame的选择、分组及合并操作,并提到了数据收集、整理、描述和分析的过程。此外,还涉及了绘图库如Matplotlib和Pandas的绘图功能,以及机器学习中的聚类分析和Python图像处理库。
摘要由CSDN通过智能技术生成

1. Scipy

https://scipy.org/

nltk库

http://www.nltk.org/nltk_data
nltk停用词库

Requests库

Requests官网:http://www.python-requests.org

BeautifulSoup

官网:https://www.crummy.com/software/BeautifulSoup/bs4/doc

Re(正则表达式)

官网:https://docs.python.org/3.5/library/re.html

Python数据处理的方法:

  • 数据收集
  • 数据整理
  • 数据描述
  • 数据分析

创建时间序列:

>>>import pandas as pd
>>>dates = pd.date_range('20170520',periods=7)
DatetimeIndex(['2017-05-20', '20
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值