跟李沐学AI:序列模型

目录

序列数据

自回归模型

马尔可夫假设

 潜变量模型

 序列模型总结


序列数据

实际中很多数据是时序结构的,如:电影的评价随时间的变化而变化:拿奖后评分上升、电影整体质量提升,人们要求变高。。。等等

除此之外,音乐、语言、文本和视频都是连续的序列数据。

自回归模型

自回归模型的基本思想是,给定一个序列(x_1,x_2,\dots,x_t),我们可以根据之前的时间点上的值来预测下一个时间点的值x_{t+1}​。具体来说,自回归模型尝试拟合如下形式的概率分布:P(x_t \mid x_{t-1}, \ldots, x_1)

这个概率分布可以用来生成新的序列数据。生成过程是从序列的开始部分逐步向前推进,每一步都基于之前已知的数据来预测下一个元素。

自回归模型有两种基本策略:

马尔可夫假设

马尔可夫模型假设当前数据只与前tau个数据相关。即p(x_t\mid x_1,\dots,x_{t-1})=p(x_t\mid x_{t-\tau,\dots,x_{t-1}}),如果\tau=1即可得到一阶马尔可夫模型:

 潜变量模型

 潜变量模型引入一个潜变量h_t来表示过去信息h_t=f(x1,\dots,x_{t-1}),这种情况下: x_t=p(x_t\mid h_t)。潜变量模型涉及两个模型,一个模型基于x_th_t计算h_{t+1},一个模型基于x_t和 计算得出的h_{t+1}计算x_{t+1}

 序列模型总结

  时序模型中,当前数据与之前观测到的数据相关。

  自回归模型使用自身过去数据预测未来数据。

  马尔可夫模型假设当前数据之和最近少数数据相关从而简化模型。

  潜变量模型使用潜变量来概括历史信息。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值