MIT线性代数习题全解

习题集1

第一题

这里写图片描述
这里写图片描述
这里写图片描述

这里实际上用到了这个等式:
cos(βα)=cos(β)cos(α)+sin(β)sin(α) cos ⁡ ( β − α ) = cos ⁡ ( β ) cos ⁡ ( α ) + sin ⁡ ( β ) sin ⁡ ( α )

第二题

这里写图片描述
三个向量,两两夹角大于90度

第三题

这里写图片描述
x1,x2,x3为w1,w2,w3线性组合的系数,向量之间的线性组合为零向量即为向量相互依赖的定义。由于3个向量不独立,因此在3维空间中形成了一个2维的超平面

第四题

这里写图片描述
这里写图片描述
可以看出C中第一行和第五行的组合可以形成第三行,因此只会有4个向量来构成平面,即在5维空间中的四维超平面。

第五题

这里写图片描述

总量不变为马尔科夫变换的性质。可以想象为两地之间的人口迁徙,无论怎么迁徙,人口总数是不变的。

第六题

这里写图片描述
这里写图片描述
这里写图片描述

这里写图片描述

如下为这题的python代码:

from numpy import *
import matplotlib
import matplotlib.pyplot as plt

u = mat([[1, 0]]).transpose()
A = mat([[.8, .3], [.2, .7]])
k = [i for i in range(7)]
res = []
for i in range(7):
    u = A * u
    res.append((u.A[0][0], u.A[1][0]))

fig, ax = plt.subplots()
ax.plot(k, res)
plt.show()
u = mat([[0, 1]]).transpose()
res = []
for i in range(7):
    u = A * u
    res.append((u.A[0][0], u.A[1][0]))

ax.plot(k, res)
plt.show()

第七题

这里写图片描述
如果行向量或者列向量不独立,则矩阵奇异。不独立的定义就是线性组合为0向量。通过第一行和第二行的线性组合构造第三行,调整b值,使其不满足等式

第八题

这里写图片描述

很简单的奇异矩阵的性质问题。

第九题

这里写图片描述
E为消元法中用到的行转换矩阵,例如:
E21=110010001 E 21 = [ 1 0 0 − 1 1 0 0 0 1 ] 表示一个第二行减去第一行的转换

第十题

这里写图片描述
这里写图片描述
考察行转换矩阵E的一题。其中通过多次E的转换到I的过程实际就是消元法的过程

第十一题

这里写图片描述

第十二题

这里写图片描述

第十三题

这里写图片描述
主要考察的是,row1 + row 2 = row3 -> b1 + b2 = b3

习题集2

第一题

这里写图片描述
通过Gauss-Jordan得出逆矩阵,公式为 UI>IU1 U I − > I U − 1

第二题

这里写图片描述

第三题

这里写图片描述
我们可以得到
E=1111011100110001 E = [ 1 0 0 0 − 1 1 0 0 − 1 − 1 1 0 − 1 − 1 − 1 1 ] 将E除对角线以外元素乘以-1即可得到L,因为L相当于把U还原成A的矩阵。

第四题

这里写图片描述

第五题

这里写图片描述
这里写图片描述

第六题

这里写图片描述

第七题

这里写图片描述

第八题

这里写图片描述

第九题

这里写图片描述
标准正交矩阵Q的几个性质

第十题

这里写图片描述
子空间的定义:在子空间中任意向量的线性组合仍在子空间中

第十一题

这里写图片描述

如果b为列向量的线性组合,即在列空间中,则增加b不会增加列空间,而这也正对应了Ax = b有解,因为Ax = b有解的条件就是b在列空间中

第十二题

这里写图片描述

第十三题

这里写图片描述

习题集3

第一题

这里写图片描述

第二题

这里写图片描述
由列向量可以得出m = 3,由零空间向量可以得出n = 3

第三题

这里写图片描述

第四题

这里写图片描述
这里写图片描述
这里写图片描述
有4个节点,由于它们的入度与初度之和等于0,可以得到4个等式,构造 Ax=0 A x = 0 ,通过消元法确定主元和自由变量,得到零空间的解

第五题

这里写图片描述

第六题

这里写图片描述

第七题

这里写图片描述
这里写图片描述
需要注意的一点是,行转换不会改变零空间

第八题

这里写图片描述

第九题

这里写图片描述

第十题

这里写图片描述
这里写图片描述

第十一题

这里写图片描述

第十二题

这里写图片描述

第十三题

这里写图片描述
这里写图片描述
这里写图片描述

第十四题

这里写图片描述

习题集4

第一题

这里写图片描述

第二题

这里写图片描述
需要注意的是,行空间与零空间垂直,因此第三问直接选第一行就可以

第三题

这里写图片描述

第四题

这里写图片描述
这题有个小错误.
P21P32=010001100 P 21 P 32 = [ 0 0 1 1 0 0 0 1 0 ]

第五题

这里写图片描述
四个子空间的关系,行空间,列空间为r维,零空间和转置零空间为n - r维,m - r维

第六题

这里写图片描述

第七题

这里写图片描述

第八题

这里写图片描述
这里写图片描述
这里写图片描述

第九题

这里写图片描述

第十题

这里写图片描述
这里写图片描述

习题集5

第一题

这里写图片描述

第二题

这里写图片描述

第三题

这里写图片描述
这里写图片描述
这里写图片描述

第四题

这里写图片描述
这里写图片描述
这里写图片描述

第五题

这里写图片描述
这里写图片描述

第六题

这里写图片描述

第七题

这里写图片描述

第八题

这里写图片描述
注意,P投影到列空间, IP I − P 投影到左零空间

第九题

这里写图片描述

第十题

这里写图片描述

第十一题

这里写图片描述

第十二题

这里写图片描述
这里写图片描述

第十三题

这里写图片描述

习题集6

第一题

这里写图片描述

第二题

这里写图片描述
这里写图片描述

第三题

这里写图片描述

这里写图片描述

第四题

这里写图片描述
这里写图片描述

第五题

这里写图片描述

第六题

这里写图片描述

第七题

这里写图片描述
这里写图片描述

第八题

这里写图片描述

第九题

这里写图片描述

第十题

这里写图片描述
注意,若矩阵奇异,则行列式为0,。

第十一题

这里写图片描述
对行进行操作不会改变行列式的值

第十二题

这里写图片描述

第十三题

这里写图片描述
这里写图片描述

习题集7

第一题

这里写图片描述
将三对角线矩阵的行列式按cofacors展开,可以发现满足斐波拉契数列的性质

第二题

这里写图片描述

第三题

这里写图片描述

第四题

这里写图片描述
注意, ACT A C T detAI d e t A I

第五题

这里写图片描述

第六题

这里写图片描述

第七题

这里写图片描述

第八题

这里写图片描述

第九题

这里写图片描述

第十题

这里写图片描述

第十一题

这里写图片描述
注意,这里求 S1 S − 1 有点小技巧,行列式的倒数乘以cofactors矩阵的转置

第十二题

这里写图片描述

第十三题

这里写图片描述

习题集8

第一题

这里写图片描述
注意,转换用到了泰勒展开

第二题

这里写图片描述

第三题

这里写图片描述

第四题

这里写图片描述

第五题

这里写图片描述

第六题

这里写图片描述

第七题

这里写图片描述

第八题

这里写图片描述

第九题

这里写图片描述
对称矩阵,特征值为实数

第十题

这里写图片描述

第十一题

这里写图片描述

第十二题

这里写图片描述

第十三题

这里写图片描述

习题地址为:
https://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010/assignments/
有空的话建议还是去看看~
持续更新~

©️2020 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页