动态规划-464-我能赢么

Description

In the “100 game,” two players take turns adding, to a running total, any integer from 1..10. The player who first causes the running total to reach or exceed 100 wins.

What if we change the game so that players cannot re-use integers?

For example, two players might take turns drawing from a common pool of numbers of 1..15 without replacement until they reach a total >= 100.

Given an integer maxChoosableInteger and another integer desiredTotal, determine if the first player to move can force a win, assuming both players play optimally.

You can always assume that maxChoosableInteger will not be larger than 20 and desiredTotal will not be larger than 300.


Example

Input:
maxChoosableInteger = 10
desiredTotal = 11

Output:
false

Explanation:
No matter which integer the first player choose, the first player will lose.
The first player can choose an integer from 1 up to 10.
If the first player choose 1, the second player can only choose integers from 2 up to 10.
The second player will win by choosing 10 and get a total = 11, which is >= desiredTotal.
Same with other integers chosen by the first player, the second player will always win.

问题描述

在”100游戏中”,两名选手轮流中1,2,…10中取数累加,当选手使累加和大于等于100时胜利

如果我们改变游戏规则,使得不能重复选择元素呢?

例如,两名选手轮流中从1,2…15这个公用池中取数,一个数一旦取过,不可再取

给定最大可选整数maxChoosableInteger和期望和desiredTotal,判断玩家一是否可以取得胜利。
假设两名玩家都是最优的选法。

maxChoosableInteger不会大于20,desiredTotal不会大于300


问题分析

DFS + memorizatoin

通过state保存状态,即当前选了哪些数
需要注意maxChoosableInteger不会大于20,我们完全可以通过一个32位的整数来表示状态
例如选择了1和2,那么状态为01 | 10 = 11 = 3(选择的数为1左移位数-1)


解法(DFS + memorization)

class Solution {
   public boolean canIWin(int maxChoosableInteger, int desiredTotal) {
        if(desiredTotal <= maxChoosableInteger) return true;
        //Note: n should be <= 32 as int is 32-bit in Java; else it will 1 << 33+ equals 0.
        int n = maxChoosableInteger;
        int sum = n * (n + 1) / 2;

        if(sum < desiredTotal)  return false;

        Boolean[] dp = new Boolean[1 << n];

        return canIWin(0, n, desiredTotal, dp);
    }

    private boolean canIWin(int state, int n, int remain, Boolean[] dp) {
        if (remain <= 0) {
            //dp[state] = false;
            //Base case:
            return false;   
        }

        if (dp[state] == null) {
            dp[state] = false;
            int mask = 1;
            //Key Point: take from the tail
            for(int i = 1; i <= n; i++){
                int future = state | mask;
                if (future != state && !canIWin(future, n, remain - i, dp)) {
                    //update current status = true
                    dp[state] = true;
                    break;
                }
                mask <<= 1;
            }
        }

        return dp[state];
    }
}
阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/LaputaFallen/article/details/79968342
个人分类: 算法与数据结构
所属专栏: leetcode全解
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭