LeetCode #232 - Implement Queue using Stacks

本文介绍了一种使用两个栈来实现队列的方法,包括push、pop、peek和empty操作。通过将元素推入第一个栈,然后在需要时将元素转移到第二个栈以实现队列的先进先出特性。

题目描述:

Implement the following operations of a queue using stacks.

• push(x) -- Push element x to the back of queue.

• pop() -- Removes the element from in front of queue.

• peek() -- Get the front element.

• empty() -- Return whether the queue is empty.

Example:

MyQueue queue = new MyQueue();

queue.push(1);

queue.push(2);  

queue.peek();  // returns 1

queue.pop();   // returns 1

queue.empty(); // returns false

Notes:

• You must use only standard operations of a stack -- which means only push to top, peek/pop from top, size, and is empty operations are valid.

• Depending on your language, stack may not be supported natively. You may simulate a stack by using a list or deque (double-ended queue), as long as you use only standard operations of a stack.

• You may assume that all operations are valid (for example, no pop or peek operations will be called on an empty queue).

class MyQueue {
public:
    /** Initialize your data structure here. */
    MyQueue() {}
    
    /** Push element x to the back of queue. */
    void push(int x) {
        s1.push(x);
    }
    
    /** Removes the element from in front of queue and returns that element. */
    int pop() {
        int result=0;
        if(!s2.empty())
        {
            result=s2.top();
            s2.pop();
            return result;
        }
        else
        {
            while(!s1.empty())
            {
                s2.push(s1.top());
                s1.pop();
            }
            result=s2.top();
            s2.pop();
            return result;
        }
    }
    
    /** Get the front element. */
    int peek() {
        int result=0;
        if(!s2.empty())
        {
            result=s2.top();
            return result;
        }
        else
        {
            while(!s1.empty())
            {
                s2.push(s1.top());
                s1.pop();
            }
            result=s2.top();
            return result;
        }
    }
    
    /** Returns whether the queue is empty. */
    bool empty() {
        return s1.empty()&&s2.empty();
    }

private:
    stack<int> s1; // push进来的元素先进入s1
    stack<int> s2; // 需要pop时,从s2中获取,当s2为空时,从s1获取元素
};

 

内容概要:本文详细介绍了一个基于CNN-GRU与AdaBoost集成的深度学习模型在时间序列预测中的完整项目实现。该模型通过卷积神经网络(CNN)提取局部时空特征,利用门控循环单元(GRU)捕捉长期时序依赖,并结合AdaBoost自适应提升算法增强模型泛化能力与鲁棒性,有效应对非线性、噪声干扰和复杂动态变化的挑战。项目涵盖从数据生成、预处理、模型构建、训练优化到结果可视化和GUI交互界面开发的全流程,提供了完整的代码示例与模块化系统架构设计,支持金融、能源、交通、医疗等多个领域的高精度预测应用。; 适合人群:具备一定Python编程基础和机器学习知识,熟悉深度学习框架(如TensorFlow/Keras)的数据科学家、算法工程师及高校研究人员,尤其适合从事时间序列分析、智能预测系统开发的相关从业者。; 使用场景及目标:①实现高精度时间序列预测,如股票价格、电力负荷、交通流量等;②构建具备强鲁棒性和抗噪能力的工业级预测系统;③开发集成深度学习与集成学习的复合模型以提升预测稳定性;④通过GUI界面实现模型的便捷部署与交互式分析。; 阅读建议:建议读者结合文档中的代码逐步实践,重点关注数据预处理、模型集成机制与可视化模块的设计逻辑,同时可在不同数据集上进行迁移实验,深入理解CNN-GRU与AdaBoost协同工作的原理与优势。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值