郑哲东的博客

计算机视觉 行人再识别 person re-ID

排序:
默认
按更新时间
按访问量

阅读小结:Deep Hashing Network for Efficient Similarity Retrieval

作者:Han Zhu, Mingsheng Long, Jianmin Wang and Yue Cao 论文地址:https://pdfs.semanticscholar.org/eb0c/64244dcf238a2cbf479ab2fdc9047fc80bc5.pdfWhat: 1.特征没...

2017-12-23 12:13:04

阅读数:249

评论数:0

行人再识别 + 行人对齐

文章链接:[1707.00408] Pedestrian Alignment Network for Large-scale Person Re-identification 代码链接:layumi/Pedestrian_Alignment1.Motivation 近年来,对行人再识别(per...

2017-11-16 20:40:14

阅读数:1292

评论数:0

阅读小结:A-Fast-RCNN: Hard Positive Generation via Adversary for Object Detection

arXiv: https://arxiv.org/pdf/1704.03414.pdf What: 1. 目标是去增强  检测器对于遮挡和形变 的泛化能力  2. 但是数据集中一般   遮挡和形变 的图像较少   3. 所以作者提出了 adversary的方法去增加 训练难度 4. 整个网络是...

2017-06-16 20:35:53

阅读数:861

评论数:0

阅读小结:Unsupervised Learning of Visual Representations using Videos

paper link: http://www.cv-foundation.org/openaccess/content_iccv_2015/html/Wang_Unsupervised_Learning_of_ICCV_2015_paper.html 发表于2015ICCVWhat: 1. 使...

2017-06-10 19:20:21

阅读数:404

评论数:0

行人重识别(行人再识别)数据集 DukeMTMC-reID

DukeMTMC-reID 下载地址:https://github.com/layumi/DukeMTMC-reID_evaluation DukeMTMC-reID 为 DukeMTMC数据集的行人重识别子集。原始数据集地址(http://vision.cs.duke.edu/DukeMTMC...

2017-05-24 21:40:07

阅读数:7105

评论数:0

【开源代码合集】行人重识别

关于行人重识别综述,推荐一下liang zheng 2016年的综述: Past, Present and Future 写了从传统方法到深度学习,从图片到视频的行人重识别的方法。 以下为一些公开的行人重识别代码链接: LOMO: Person Re-identification by Lo...

2017-02-19 08:01:56

阅读数:6387

评论数:0

阅读小结:The Unreasonable Effectiveness of Noisy Data for Fine-Grained Recognition

The Unreasonable Effectiveness of Noisy Data for Fine-Grained Recognition paper link: http://cn.arxiv.org/pdf/1511.06789.pdf What: 同上一篇一样,这也是一篇关于细...

2016-12-12 15:42:55

阅读数:832

评论数:0

阅读小结:Fine-Grained Recognition with Automatic and Efficient Part Attention

这是一篇baidu research的paper。 主题为细力度分类。这个问题在于找到一些关键的细节。比如在鸟类数据集CUB上,专家往往也是通过鸟的尾巴,或者头部来对鸟类分类的。 What: 预测细力度分类的CNN+MDP的网络。 1. 融合了三个元素: 特征提取,attetion 和细力度分...

2016-12-11 17:12:56

阅读数:918

评论数:2

【行人重识别】A Discriminatively Learned CNN Embedding for Person Re-identification

A Discriminatively Learned CNN Embedding for Person Re-identification 这篇paper主要提出的是一种 行人重识别 的方法。 1. verification label 为0,1二值。如果输入的两张图片为同一人,则为1,否则为0。...

2016-12-11 00:07:57

阅读数:3804

评论数:3

阅读A Discriminative Feature Learning Approach for Deep Face Recognition

What: 对于分类任务来说,最后预测的是一个联合概率。 打个比方:[1,0,0,1],[0,1,1,0]我可以预测为同一类。只要用[1,0,1,0]的filter。卷积和都是1,没毛病。 但是我们发现一个问题。 这两个虽然是同一类,但是特征完全不同。也就是说,如果我们拿CNN中间的特征出来,也可...

2016-11-21 20:52:11

阅读数:1624

评论数:3

阅读小结:Google's Neural Machine Translation System

自然语言处理中很多思想对cv也有用,所以决定看这篇paper。 然后我会从几篇前置的paper看起。 讲CharCNN的文章: https://zhuanlan.zhihu.com/p/21242454 讲为什么Char好的文章:http://colinmorris.github.io/bl...

2016-10-01 18:18:01

阅读数:1363

评论数:0

阅读小结:Large-Margin Softmax Loss for Convolutional Neural Networks

徐博最近一直在看我博客,肯定是想看我什么时候不更新,然后好嘲笑我。当然,不排除徐博已经爱上我的可能。 What: 改进SoftmaxLoss,显式的控制类内的距离,(不让 已经对的样本score太高,影响训练) 可以防止过拟合。 回顾SoftmaxLoss: 1. Softmax 就是...

2016-09-26 21:30:26

阅读数:1316

评论数:2

周志华《机器学习》 读后感

书还是比较厚的,我会挑感兴趣的章节先更新。 以写小结和感想为主。(我也是机器学习入门,所以小结以感性理解为主。) 第四章 决策树 ☑️ ---------第四章 决策树 ----------- What 决策树 首先是一棵树 利用贪心法 每个中间节点 按照学习到的原则分隔 几波数据,(就是...

2016-09-16 20:03:55

阅读数:3076

评论数:1

《造梦者》观后感

最近因为签证的事情待在家里,paper也在准备。 可就是没心思写paper,查related work、introduction讲故事 啥的 真的对一个不说英语的人来说很烦啊。 实验上还没有尽善尽美,所以心里很郁闷。 看了造梦者,然后发现马云爸爸果然是高瞻远瞩。 同时也是吃了好多苦...

2016-09-15 10:08:49

阅读数:4377

评论数:0

设计心理学1_日常的设计 读后感

书很厚,我会一点点update,以感想和摘录书中。 《设计心理学1_日常的设计》 唐纳德.A.诺曼 著 ----------------第一章 日用品心理学---------------- 一开篇作者就通过玻璃门案例 和壶把/茶嘴同一侧的茶壶设计  指出:好的设计有两个重要特征:可视性(...

2016-09-11 20:53:35

阅读数:2586

评论数:0

阅读小结:InfoGAN:Interpretable Representation Learning by Information Maximising Generative Adversarial

之前GAN中都没有加入分类信息,都是耍流氓啊。用原始maxD的时候,G学到的容易收敛到一个固定图像。 而用feature matching的话,相同向量可能每次match的都不同,这怎么regression啊,摔  (也可能我是用姿势不对,但有多类的feature matching不靠谱啊) ...

2016-09-08 19:56:11

阅读数:4333

评论数:7

阅读小结:Stacked Hourglass Networks for Human Pose Estimation

arXiv: https://arxiv.org/pdf/1603.06937v2.pdf github: https://github.com/anewell/pose-hg-train What: 人体关键点预测,输入人体图像输出几个关键点。 使用了反复迭代bottom down/  ...

2016-09-07 14:34:53

阅读数:5377

评论数:4

阅读小结:Improved Techniques for training GANS

github地址:https://github.com/openai/improved-gan/ What: 提出了对于GANs新的结构和训练过程。主要focus在两个应用:半监督学习 和  更好的图像产生。 对于G,不要求一个和test data和像的模型,也不要求不使用label。 实验中...

2016-09-02 13:40:27

阅读数:5259

评论数:9

阅读小结:Unsupervised Representation with Deep Convolutional Generative Adversarial Networks

What CNN应用于无监督学习。将这种CNN称为DCGANs 1.提出和评估了DCGANs 有一些结构上的限制,让他可以stable的去训练。 2.利用图像分类任务训练的discriminator,证明了他们有无监督学习的潜力。(这是迁移学习?) 证明了他们的adversarial pair学习...

2016-08-27 22:38:32

阅读数:1492

评论数:2

阅读小结:Generative Adversarial Nets

这是Ian Goodfellow大神的2014年的paper,最近很火,一直没看,留的坑。 中文应该叫做对抗网络 What: 同时驯良两个模型:一个生成模型G(获得数据分布),一个区分模型D(预测输入是真实的,还是G中产生的) G的训练目标就是最大化D犯错误的可能,这样G这个生成模型就越厉害。...

2016-08-26 15:03:44

阅读数:6090

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭