回溯算法 | 77. 组合 216.组合总和III 17.电话号码的字母组合

77. 组合

题目链接: 77. 组合 - 力扣(LeetCode)
文章讲解:代码随想录
视频讲解:带你学透回溯算法-组合问题(对应力扣题目:77.组合)| 回溯法精讲!

思路

  1. 把问题抽象为如下树形结构:[根据下一个数选哪个构造树]
    在这里插入图片描述
    图中可以发现n相当于树的宽度,k相当于树的深度。图中每次搜索到了叶子节点,就找到了一个结果。代码中的path存的就是根节点到叶子节点的路径
  2. 【时间复杂度:分析回溯问题的时间复杂度,有一个通用公式:路径长度×搜索树的叶子数。O(k⋅C(n,k))
    空间复杂度:O(k*n)】
  3. 剪枝:当剩余元素小于我们的要求时,不需要继续遍历
  4. 除了按上面的方式构造二叉树外,还可以按照每一个数选与不选画出二叉树,二叉树最多n层:
    来自LeetCode用户@liweiwei1419

下一个数选哪个

class Solution:
    def combine(self, n: int, k: int) -> List[List[int]]:
        result = []
        path = []
        def dfs(s):
            if len(path) == k:
                result.append(path.copy())
                return 
            if len(s) < k-len(path): # 剪枝
                return
            for i in range(len(s)): # 控制树的横向遍历
                path.append(s[i]) # 处理节点
                dfs(s[i+1:]) # 递归:控制树的纵向遍历
                path.pop() # 回溯,撤销处理的节点

        s = []
        for i in range(n):
            s.append(i+1)
        dfs(s)
        return result

下一个数选哪个的另一种写法

class Solution:
    def combine(self, n: int, k: int) -> List[List[int]]:
        result = []  # 存放结果集
        self.backtracking(n, k, 1, [], result)
        return result
    def backtracking(self, n, k, startIndex, path, result):
        if len(path) == k:
            result.append(path[:])
            return
        for i in range(startIndex, n - (k - len(path)) + 2):  # 优化的地方:搜索起点有上界
            path.append(i)  # 处理节点
            self.backtracking(n, k, i + 1, path, result)
            path.pop()  # 回溯,撤销处理的节点

每一个数选与不选

class Solution:
    def combine(self, n: int, k: int) -> List[List[int]]:
        result = []
        path = []
        def backtracking(i):
            # 终止条件
            if len(path) == k:
                result.append(path[:])
                return
            if i > n: # 可删
                return
            if i > n-(k-len(path))+1: # 剪枝
                return
            
            # 不选
            backtracking(i+1)

            # 选
            path.append(i)
            backtracking(i+1)
            path.pop()
        backtracking(1)
        return result

216.组合总和III

题目链接: 216.组合总和III - 力扣(LeetCode)
文章讲解:代码随想录
视频讲解:和组合问题有啥区别?回溯算法如何剪枝?| LeetCode:216.组合总和III

思路

  1. 剪枝:path中元素总和大于n,返回;剩余元素个数小于我们需要的个数,返回

下一个选哪个数

class Solution:
    def combinationSum3(self, k: int, n: int) -> List[List[int]]:
        result = []
        path = []
        s = [1,2,3,4,5,6,7,8,9]
        def backtracking(startIndex,sumPath):
            # 剪枝
            if sumPath > n:
                return

            if len(path) == k:
                if sumPath == n:
                    result.append(path[:])
                return
            
            for i in range(startIndex,10-(k-len(path))): # 剪枝
                path.append(s[i])
                backtracking(i+1,sumPath+s[i])
                path.pop()
        
        backtracking(0,0)
        return result     

下一个数选与不选

class Solution:
    def combinationSum3(self, k: int, n: int) -> List[List[int]]:
        result = []
        path = []
        def backtracking(i,sumPath):
            if len(path) == k:
                if sumPath == n:
                    result.append(path[:])
                return
            if i > 10-(k-len(path)): # 剪枝
                return
            if i > 9: # 可删
                return
            
            # 不选
            backtracking(i+1,sumPath)
            # 选
            path.append(i)
            backtracking(i+1,sumPath+i)
            path.pop()
        
        backtracking(1,0)
        return result

17.电话号码的字母组合

题目链接: 17.电话号码的字母组合- 力扣(LeetCode)
文章讲解:代码随想录
视频讲解:还得用回溯算法!| LeetCode:17.电话号码的字母组合

思路

回溯

class Solution:
    def letterCombinations(self, digits: str) -> List[str]:        
        MAPPING = ['','','abc','def','ghi','jkl','mno','pqrs','tuv','wxyz']
        result = []
        n = len(digits)
        if n == 0:
            return []
        
        def backtracking(string,k):
            if len(string) == n:
                result.append(string)
                return
            for s in MAPPING[int(digits[k])]:
                backtracking(string+s,k+1)
        
        backtracking('',0)
        return result
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值