77. 组合
题目链接: 77. 组合 - 力扣(LeetCode)
文章讲解:代码随想录
视频讲解:带你学透回溯算法-组合问题(对应力扣题目:77.组合)| 回溯法精讲!
思路
- 把问题抽象为如下树形结构:[根据下一个数选哪个构造树]

图中可以发现n相当于树的宽度,k相当于树的深度。图中每次搜索到了叶子节点,就找到了一个结果。代码中的path存的就是根节点到叶子节点的路径 - 【时间复杂度:分析回溯问题的时间复杂度,有一个通用公式:路径长度×搜索树的叶子数。O(k⋅C(n,k))
空间复杂度:O(k*n)】 - 剪枝:当剩余元素小于我们的要求时,不需要继续遍历
- 除了按上面的方式构造二叉树外,还可以按照每一个数选与不选画出二叉树,二叉树最多n层:

下一个数选哪个
class Solution:
def combine(self, n: int, k: int) -> List[List[int]]:
result = []
path = []
def dfs(s):
if len(path) == k:
result.append(path.copy())
return
if len(s) < k-len(path): # 剪枝
return
for i in range(len(s)): # 控制树的横向遍历
path.append(s[i]) # 处理节点
dfs(s[i+1:]) # 递归:控制树的纵向遍历
path.pop() # 回溯,撤销处理的节点
s = []
for i in range(n):
s.append(i+1)
dfs(s)
return result
下一个数选哪个的另一种写法
class Solution:
def combine(self, n: int, k: int) -> List[List[int]]:
result = [] # 存放结果集
self.backtracking(n, k, 1, [], result)
return result
def backtracking(self, n, k, startIndex, path, result):
if len(path) == k:
result.append(path[:])
return
for i in range(startIndex, n - (k - len(path)) + 2): # 优化的地方:搜索起点有上界
path.append(i) # 处理节点
self.backtracking(n, k, i + 1, path, result)
path.pop() # 回溯,撤销处理的节点
每一个数选与不选
class Solution:
def combine(self, n: int, k: int) -> List[List[int]]:
result = []
path = []
def backtracking(i):
# 终止条件
if len(path) == k:
result.append(path[:])
return
if i > n: # 可删
return
if i > n-(k-len(path))+1: # 剪枝
return
# 不选
backtracking(i+1)
# 选
path.append(i)
backtracking(i+1)
path.pop()
backtracking(1)
return result
216.组合总和III
题目链接: 216.组合总和III - 力扣(LeetCode)
文章讲解:代码随想录
视频讲解:和组合问题有啥区别?回溯算法如何剪枝?| LeetCode:216.组合总和III
思路
- 剪枝:path中元素总和大于n,返回;剩余元素个数小于我们需要的个数,返回
下一个选哪个数
class Solution:
def combinationSum3(self, k: int, n: int) -> List[List[int]]:
result = []
path = []
s = [1,2,3,4,5,6,7,8,9]
def backtracking(startIndex,sumPath):
# 剪枝
if sumPath > n:
return
if len(path) == k:
if sumPath == n:
result.append(path[:])
return
for i in range(startIndex,10-(k-len(path))): # 剪枝
path.append(s[i])
backtracking(i+1,sumPath+s[i])
path.pop()
backtracking(0,0)
return result
下一个数选与不选
class Solution:
def combinationSum3(self, k: int, n: int) -> List[List[int]]:
result = []
path = []
def backtracking(i,sumPath):
if len(path) == k:
if sumPath == n:
result.append(path[:])
return
if i > 10-(k-len(path)): # 剪枝
return
if i > 9: # 可删
return
# 不选
backtracking(i+1,sumPath)
# 选
path.append(i)
backtracking(i+1,sumPath+i)
path.pop()
backtracking(1,0)
return result
17.电话号码的字母组合
题目链接: 17.电话号码的字母组合- 力扣(LeetCode)
文章讲解:代码随想录
视频讲解:还得用回溯算法!| LeetCode:17.电话号码的字母组合
思路

回溯
class Solution:
def letterCombinations(self, digits: str) -> List[str]:
MAPPING = ['','','abc','def','ghi','jkl','mno','pqrs','tuv','wxyz']
result = []
n = len(digits)
if n == 0:
return []
def backtracking(string,k):
if len(string) == n:
result.append(string)
return
for s in MAPPING[int(digits[k])]:
backtracking(string+s,k+1)
backtracking('',0)
return result
1486

被折叠的 条评论
为什么被折叠?



