游戏王Duel Links跨终端数据转移 1. 游戏王(Yu Gi Oh!)充满童年回忆的游戏王决斗游戏其实很早就有了,只是没有对大陆开放。我是在2017年1月开始玩的,不过当时没搞清数据跨设备转移,同时误以为google play可以存储我的用户信息,结果导致后来换设备时数据全部丢失!!!这也直接导致后来很长时间没有玩。通过查询网上人的帖子,终于搞懂了怎样转移数据,喜大普奔。先来看我最近收获的神之卡!天空龙和巨神兵。...
西部世界:生存(WestLand Survival) 游戏攻略 游戏类型:生存对于新手来说,前期的生存还是非常关键的,因为一旦死掉了,新手资源就浪费了,后面也会获得很艰难。总是缺水、缺食物的。生存关键: 水 我因为缺水已经死了2次了,首先会送3瓶水,在家里的箱子中。要珍惜。1.建造篝火!!!建造田地!2.采集浆果!!3.煮浆果,用于补充水!!!田地种玉米,煮玉米粥,防饿!!4.级别升上来后,可以建造水井野外采集资源:可以先去等级低的野外...
多用户同时远程桌面连接ubuntu服务器 1. 服务器桌面共享允许他人访问2. 安装xrdp、vnc、xfcesudo apt-get install xrdpsudo apt-get install vnc4serversudo apt-get install xubuntu-desktopecho "xfce4-session" >~/.xsession3. 修改 (决定能不能多人访问的一步)sudo gedi...
语义分割之large kernel matters个人总结 1. Architecture作者想要解决的是分类与定位的对立矛盾。分类具有平移不变性,而定位则对位置变化非常敏感。在分割任务中,全卷积的网络更侧重于定位,往往会让分类任务获得的感受野较小,这会导致无法获得足够的object信息,不利于分类。于是作者增大了感受野。整体的decoder过程依旧是老套路,融合+反卷积。不过,引入了两个新的block–GCN和BR。2. GCN类似于In...
语义分割之PSPNet个人总结 1. Architecture作者想解决的问题有:(1) 由于没有理解上下文语义关系导致类的错分,如水上的船被错分为car,而事实是car一般不在水上。(2) 相似类的混淆: 如 摩天大楼、building、wall。(3) 不显眼的类的划分,如路灯。作者认为想解决这三个问题,在于要利用不同感受野的信息,并且要理解上下文语义关系。于是作者致敬SPPNet,也采用了多尺度池化。主要核...
语义分割之RefineNet个人总结 1. ArchitectureRefineNet是ResNet + 金字塔 的结合体。ResNet残差块可以让网络变的很深。金字塔则是用于Refine。 high-level feature map语义信息较强,但更粗糙。而low-level feature map则具有更好的fine-grained特征。 于是利用金字塔不断的融合这两种特征。整个网络从大体上和之前的语义分割一样,都是从...
解决ubuntu下steam打不开(couldn't set up steam data) Problem: couldn’t set up Steam datasolution:OK, the problem has been solved! we can start steam and play dota2 !
深度学习之DenseNet个人总结 1. 网络结构CVPR2017的oral。DenseNet和ResNet很相似,都可以防止梯度消失,并且都作为一种block可以放在任何网络中。ResNet 主要是利用skip connection,对两个feature map进行Eltwise add操作,作为下一层的输入。而DenseNet则是对两个feature map进行concat操作,作为下一层的输入。(可能和图中画的有点出入...
语义分割之U-net个人总结 1. 网络结构U-net的特点在于,通过将下采样时feature map和上采样(反卷积)时feature map进行concat,来融合位置信息和语义信息。图中,input是一张单通道图片,最后output之前,通道数2表示num_classes=2.同时,图中的crop: 最后复现时我看到的更多的是直接concat。2. 示例代码代码来源于互联网。和图片中略微有所出入,不过更适合应...
语义分割之SegNet个人总结 1. 网络结构SegNet采用的是对称式的结构,同时引入了BN层(相比于FCN)。encoder即pooling,decoder即upsample。SegNet的核心在于其上采样的方法(decoder部分)。 FCN是利用双线性插值初始化的反卷积进行上采样。而SegNet则是在每次pooling时,都存下最大值的位置,在upsample时将input值直接赋给相应的位置,其他位置的值置零...
语义分割之FCN个人总结 一、网络结构FCN涉及到了不同尺度的feature map的融合。融合理由是:低层特征具有较多的的分辨率信息,更加精细,但语义信息较弱。高层特征具有较多语义信息,然而较粗糙,分辨率信息不足。为了融合语义信息和细节信息,对高层的feature map进行反卷积,然后将低层的feature map crop成相同尺寸,最后进行像素级的相加。最后,从pool3处融合输出的feature map...
Ubuntu下安装有道词典 从有道词典官网下载linux版本的包解压dpkg -X ./youdao-dict_1.1.0-0-ubuntu_amd64.deb youdao-dictdpkg -e ./youdao-dict_1.1.0-0-ubuntu_amd64.deb youdao-dict/DEBIAN修改control文件,删除gstreamer0.10-plugins-ugly重新打包...
轻量级网络--SqueezeNet、ShuffleNet_v2、MobileNet_v2 大网络虽然精度高,但是体积太大,不利于部署移动端。于是出现了一些性能好、精度高的轻量级网络。一、SqueezeNet SqueezeNet的特点就是先squeeze,再expand。 即先降低channel数量,再分两路扩大channel数量,最后进行concat拼接。 模型大小不到5M。 我将SqueezeNet作为base_network用到faster rcnn上,检测一下自...
深度学习之SENet SENet是17年的分类赛的冠军(错误率最低),上个星期跑了一下,所以做个总结。SENetSENet是一种网络层之间可以安插的block,比如可以安插在ResNet、Inception中。它的核心就是: 对feature map,抑制没用的channel,增强有用的channel。而抑制和增强则是通过训练(0,1)之间的权重来完成。具体如下: 以SE-Inception...
人脸对齐(Face Alignment) 有时候,我们希望数据集中的人脸全是正的,而不是歪着头的,并且希望所有的人脸都处于图片中固定的位置,于是我们需要对图像进行旋转,将头摆正,然后再进行平移,把人脸放到图片正中央。 此时,我们需要建立纠正后图像与原图的关系。如图,我们需要将(x,y)纠正为(x’,y’)。 可以得到如下表达式: 我选取的是眼角的两个点(通过特征点定位得到),设置变换后的点为(110,95),(160...
深度学习之GoogLeNet (Inception v4 & Inception-ResNet-v2) Google的Inception是比较特别的网络结构,利用多个size不同的卷积核对input进行处理,最后在channel上进行拼接。可以有效减少参数量,从而防止过拟合且节省计算资源。 关于Inception v1和v3,这篇文章写的非常好:GoogLeNet Inception v1及v3本文主要很浅很浅地介绍下v4以及与ResNet相结合的网络。(因为Inception的motiv...
人脸识别之 Center Loss 2016年的 ECCV1. Introduction对于人脸识别来说,不仅要将不同类的特征分开,还应该将同一类内样本的特征变得紧凑。本文提出一个新的损失函数:center loss,有效增强CNN对学到的深度特征的辨别力。什么是辨别力? 如图: 不同类分开了,但是同一类的样本距离也比较大(图左)。 有了辨别力后,同一类内样本变得更紧凑了(图右)。center l...
人脸识别之FaceNet 从来没做过人脸识别,决定好好学习学习。1. Introduction首先看看是一个怎样的流程: 这里有一个embedding嵌入到我们的网络当中,随后接了一个三元组损失。我们使用一个embedding: f(x),将图像变换到一个128维的特征空间中,在这里存放所有脸之间的距离。 相同人脸的距离比较小,而不同人脸的距离比较大。三元组由2个同一个人的face和1个其他人的...
人脸关键点检测之TSRN (Deep Regression Architecture with Two-Stage Re-initialization) 2017年的CVPR1. Introductionpipeline: 首先是全局阶段(整张脸) (1)对人脸进行re-initialize,把它变成一个规范的形状。如(a)处理后,人脸变正了。 (2)进行一个粗精度的回归然后是局部阶段 (3)对人脸的不同部分进一步进行re-initialize,变成规范的状态 (4)分别对每一部分再次进行回归实验中,在300-W和...
人脸关键点检测之Facial landmark detection using Multi-Task Learning 2014 ECCV的paper1. Introduction作者认为,人脸关键点检测不是一个孤立的问题,应该与其他问题联系起来(比如头的姿势、有无旋转、有无戴眼镜、有没有笑)。为什么要这样猜想呢?因为人脸处于不同的状态,其特征也是不同的。对于不同的图片,如果CNN能区分出它的状态,那么会更有利于检测关键点。比如侧脸和正脸的关键点的位置是不同的。有没有旋转,关键点的分布也是不同的。 ...