深度学习:RNN学习

本文介绍了循环神经网络(RNN)的基本概念、类型及其在处理序列数据时的作用,强调了RNN的长序依赖问题。接着,详细讨论了LSTM网络,包括其三扇门结构(输入门、遗忘门、输出门)如何解决长序依赖,并举例说明LSTM在语音识别领域的应用。最后,推荐了一篇关于RNN监督序列标注的论文。
摘要由CSDN通过智能技术生成

在深度学习里经常听到CNN、RNN、概率图模型、深度信念等奇怪的词汇,刀哥最近一段时间就来说道一下。

什么是RNN呢?

循环神经网络是1986年Rumelhart等人提出的用于出来序列数据的神经网络,一般认为它可以拓展到更长的序列,大部分循环神经网络都是序列可变长的。

我们来看一下RNN需要应对的问题,假设存在一个时间序列的函数前一刻的输出结果影响下一刻的输出。

这种问题可在以下方面上容易遇到:

1.自然语言处理

2.机器翻译

3.语音识别

4.实时三维重建

遇到这种问题要怎么解决呢?

首先我们先把时间序列的函数关系搞清楚:

s^{(t)}=f(s^{(t-1)},\Theta )

在一个有限长序列中,前一时刻的结果影响下一时刻。假设我们在这种规律下加入输入:

s^{(t)}=f(s^{(t-1)},x^{t};\Theta )

理论上说,这是最简单的前馈循环神经网络。

说完基本概念,我们来说说RNN的几种基本类型:

1.每个时间步都有输出,并且隐藏单元之间有循环链接的循环网络。

2.每个时间不都产生一个输出,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值