在深度学习里经常听到CNN、RNN、概率图模型、深度信念等奇怪的词汇,刀哥最近一段时间就来说道一下。
什么是RNN呢?
循环神经网络是1986年Rumelhart等人提出的用于出来序列数据的神经网络,一般认为它可以拓展到更长的序列,大部分循环神经网络都是序列可变长的。
我们来看一下RNN需要应对的问题,假设存在一个时间序列的函数前一刻的输出结果影响下一刻的输出。
这种问题可在以下方面上容易遇到:
1.自然语言处理
2.机器翻译
3.语音识别
4.实时三维重建
遇到这种问题要怎么解决呢?
首先我们先把时间序列的函数关系搞清楚:

在一个有限长序列中,前一时刻的结果影响下一时刻。假设我们在这种规律下加入输入:

理论上说,这是最简单的前馈循环神经网络。
说完基本概念,我们来说说RNN的几种基本类型:
1.每个时间步都有输出,并且隐藏单元之间有循环链接的循环网络。
2.每个时间不都产生一个输出,

本文介绍了循环神经网络(RNN)的基本概念、类型及其在处理序列数据时的作用,强调了RNN的长序依赖问题。接着,详细讨论了LSTM网络,包括其三扇门结构(输入门、遗忘门、输出门)如何解决长序依赖,并举例说明LSTM在语音识别领域的应用。最后,推荐了一篇关于RNN监督序列标注的论文。
最低0.47元/天 解锁文章
474

被折叠的 条评论
为什么被折叠?



