/* I will wait for you */
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <ctime>
#include <algorithm>
#include <iostream>
#include <fstream>
#include <vector>
#include <queue>
#include <deque>
#include <set>
#include <map>
#include <string>
#define make make_pair
#define fi first
#define se second
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> pii;
const int maxn = 100010;
const int maxm = 100010;
const int maxs = 26;
const int inf = 0x3f3f3f3f;
const int P = 1000000007;
const double error = 1e-9;
inline int read()
{
int x = 0, f = 1;
char ch = getchar();
while (ch < '0' || ch > '9')
f = (ch == '-' ? -1 : 1), ch = getchar();
while (ch >= '0' && ch <= '9')
x = x * 10 + ch - '0', ch = getchar();
return x * f;
}
deque <int> q;
int s[maxn], f[maxn];
void insert(int x, int c) {
for (; x < maxn; x += x & -x)
s[x] = max(s[x], c);
}
int query(int x) {
int ans = 0;
for (; x; x -= x & -x)
ans = max(ans, s[x]);
return ans;
}
int main()
{
int n = read();
for (int i = 1; i <= n; i++) {
int pos = read();
q.insert(q.begin() + pos, i);
}
for (int i = 0; i < n; i++) {
f[q[i]] = query(q[i]) + 1;
insert(q[i], f[q[i]]);
}
for (int i = 1; i <= n; i++) {
f[i] = max(f[i], f[i - 1]);
printf("%d\n", f[i]);
}
return 0;
}
BZOJ1131【树状数组】【deque】
最新推荐文章于 2021-08-24 20:36:15 发布
本文介绍了一种使用差分数组优化区间更新与查询操作的方法。通过预处理与数据结构技巧,实现了高效的区间更新及查询最大值功能。文章通过具体代码示例展示了如何利用差分数组进行区间更新,并在每次查询时快速找到区间内的最大值。

279

被折叠的 条评论
为什么被折叠?



