2016年蓝桥杯省赛C/C++ A组 第八题 四平方和

四平方和定理,又称为拉格朗日定理: 
每个正整数都可以表示为至多4个正整数的平方和。 
如果把0包括进去,就正好可以表示为4个数的平方和。
比如: 
5 = 0^2 + 0^2 + 1^2 + 2^2 
7 = 1^2 + 1^2 + 1^2 + 2^2 
(^符号表示乘方的意思)
对于一个给定的正整数,可能存在多种平方和的表示法。 
要求你对4个数排序: 0 <= a <= b <= c <= d 
并对所有的可能表示法按 a,b,c,d 为联合主键升序排列,最后输出第一个表示法
程序输入为一个正整数N (N<5000000) 
要求输出4个非负整数,按从小到大排序,中间用空格分开
例如,输入: 
5 
则程序应该输出: 
0 0 1 2 
再例如,输入: 
12 
则程序应该输出: 
0 2 2 2 
再例如,输入: 
773535 
则程序应该输出: 
1 1 267 838
资源约定: 
峰值内存消耗 < 256M 
CPU消耗 < 3000ms
请严格按要求输出,不要画蛇添足地打印类似:“请您输入…” 的多余内容。 
所有代码放在同一个源文件中,调试通过后,拷贝提交该源码。 
注意: main函数需要返回0 
注意: 只使用ANSI C/ANSI C++ 标准,不要调用依赖于编译环境或操作系统的特殊函数。 
注意: 所有依赖的函数必须明确地在源文件中 #include , 不能通过工程设置而省略常用头文件。 
提交时,注意选择所期望的编译器类型。

#include<iostream>
#include<cmath>
using namespace std;

void solve(int n) {
	int n1 = n;
	for(int a = 0; a <= sqrt(n1); a++) {
		int n2 = n1 - a * a;
		for(int b = 0; b <= sqrt(n2); b++) {
			int n3 = n2 - b * b;
			for(int c = 0; c <= sqrt(n3); c++) {
				int n4 = n3 - c * c;
				int d = sqrt(n4);
				if(n4 == d * d) {
					cout << a << " " << b << " " << c << " " << d << endl;
					return;
				}
			}
		}
	}
}

int main() {
	int n;
	cin >> n;
	solve(n);
	return 0;
}
来源:https://blog.csdn.net/summonlight/article/details/61427968
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值