摘要:
目标检测是计算机视觉领域的重要任务之一,而在目标检测中,标签的分配策略起着关键作用。为了提高目标检测的准确性和效率,研究人员不断提出新的改进方法。本文介绍了一种基于Task-aligned Assignment任务对齐学习(TAL)的改进模型,用于优化YOLOv5的标签分配策略,并在单阶段目标检测任务中取得了新的纪录。
-
引言
目标检测是计算机视觉领域的重要任务,广泛应用于图像识别、智能监控、自动驾驶等领域。YOLOv5是一种基于单阶段目标检测的模型,在速度和准确性方面取得了显著的突破。然而,YOLOv5的标签分配策略仍然存在一些问题,如标签困难样本的处理不够精准,导致在复杂场景中的目标检测准确率较低。 -
相关工作
在过去的研究中,有许多关于改进标签分配策略的方法被提出。其中TOOD方法是一种基于标签分配策略的改进模型,可以在一定程度上优化YOLOv5的准确性。然而,TOOD方法仍然存在一些问题,如处理复杂场景时的表现欠佳。 -
改进模型
我们提出了一种新的模型,基于任务对齐学习(TAL)的思想。TAL模型通过学习样本的任务感知性和语义相关性,对标签进行更精准的分配。具体来说,我们为每个样本分配一个权重,该权重反映了样本的任务重要性。在标签分配过程中,我们根据样本的权重进行优化,使得模型能够更好地适应复杂场景。 <