力扣304.二维区域和检索-矩阵不可变(二维前缀和)

本文介绍了如何使用前缀和技巧优化二维矩阵中子矩阵元素和的计算,通过构建preSum数组来减少复杂度,使得sumRegion函数的时间复杂度降低到O(1)。作者强调思维灵活性在实际问题中的重要性。
摘要由CSDN通过智能技术生成

前言

算法笔记

一、二维矩阵中的前缀和

其实与一维矩阵前缀和类似,都可以看做在原矩阵的基础上new一个新的矩阵,通过新矩阵在求题目要求的部分。

二、题目

在这里插入图片描述
在这里插入图片描述
按照题目要求,矩阵左上角为坐标原点(0,0),那么sumRegion([2,1,4,3])就是图中红色区域,需要做的就是返回该红色子矩阵的元素和8。
法一:用一个嵌套for循环遍历这个矩阵,但复杂度就太高了

1.笔记

其实任意子矩阵的元素和可以转化为他周边几个大矩阵的元素和的运算
在这里插入图片描述
这四个矩阵共同的特点呢就是,都是左上角(0,0)为原点
这道题就可以new一个二维preSum数组,专门记录以原点为顶点的矩阵的元素和,就可以用几次加减运算算出任何一个子矩阵的元素和

2.题目解答

代码如下(示例):

class NumMatrix {
//定义:presum[i][j]记录matrix中子矩阵[0,0,i-1,j-1]的元素和
    private:vector<vector<int>> presum;
public:
    NumMatrix(vector<vector<int>>& matrix) {
int m=matrix.size(),n=matrix[0].size();//m为矩阵行,n为矩阵列
if(m==0||n==0) return;
 presum = vector<vector<int>>(m + 1, vector<int>(n + 1, 0));//构造前缀和矩阵
for(int i=1;i<=m;i++){
    for(int j=1;j<=n;j++){
    //计算每个矩阵[0,0,i,j]的元素和
        presum[i][j]=presum[i-1][j]+presum[i][j-1]+matrix[i-1][j-1]-presum[i-1][j-1];//计算每个矩阵[0,0,i,j]的元素和,解释为:presum[i][j]=上方矩阵元素和+左方矩阵元素和+原始矩阵matrix在[i-1][j-1](presum矩阵相较于原始矩阵多了一行一列)位置的元素和-左上方矩阵元素和(因为上方矩阵和左方矩阵相加多了一次左上方矩阵和):看下方图解
    }
}
    }
    //计算矩阵[row1, col1, row2, col2]的元素和
    int sumRegion(int row1, int col1, int row2, int col2) {
    return presum[row2+1][col2+1]-presum[row1][col2+1]-presum[row2+1][col1]+presum[row1][col1];
    //我的理解为其实可以看前面计算每个矩阵[0,0,i,j]的元素和那部分代码,其实就是要求matrix[i][j]=?,所以通过代数运算可以得到这个式子
    }
};

计算每个矩阵[0,0,i,j]的元素和那部分代码图解
在这里插入图片描述

总结

sumRegion函数的时间复杂度也用前缀和技巧优化到O(1),实际运用中还是要多培养自己的思维灵活性。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值