在医学领域,基于视觉的三维重建与定位技术具有重要的应用价值,尤其在手术规划、肿瘤定位、诊断分析等方面。以下是针对医疗图像的三维重建与定位的一些关键技术和应用:
1. 三维重建
- 图像获取:从CT(计算机断层扫描)、MRI(磁共振成像)、超声等多种成像设备获取二维切片图像。这些图像提供了不同层面的人体组织信息。
- 图像配准:在多模态成像(如CT与MRI)的情况下,配准算法(如基于互信息的配准)用于对齐不同模态下的图像,从而生成一致的三维结构。
- 三维体绘制:使用算法(如体素成像、Marching Cubes)将二维切片图像重建为三维体数据。重建后的三维图像可以用于器官的可视化、手术规划等。
- 分割与标注:对重建的三维图像进行器官或病灶的分割,通常采用深度学习方法(如3D U-Net、V-Net)自动分割肿瘤、器官等目标区域。
2. 三维定位
- 解剖结构识别:利用深度学习算法(如ResNet、DenseNet)自动识别三维重建图像中的解剖结
订阅专栏 解锁全文
770

被折叠的 条评论
为什么被折叠?



