DCT变换、DCT反变换、分块DCT变换

转自:https://www.cnblogs.com/wyuzl/p/7880124.html

一、引言

       DCT变换的全称是离散余弦变换(Discrete Cosine Transform),主要用于将数据或图像的压缩,能够将空域的信号转换到频域上,具有良好的去相关性的性能。DCT变换本身是无损的,但是在图像编码等领域给接下来的量化、哈弗曼编码等创造了很好的条件,同时,由于DCT变换时对称的,所以,我们可以在量化编码后利用DCT反变换,在接收端恢复原始的图像信息。DCT变换在当前的图像分析已经压缩领域有着极为广大的用途,我们常见的JPEG静态图像编码以及MJPEG、MPEG动态编码等标准中都使用了DCT变换。

二、一维DCT变换

      一维DCT变换时二维DCT变换的基础,所以我们先来讨论下一维DCT变换。一维DCT变换共有8种形式,其中最常用的是第二种形式,由于其运算简单、适用范围广。我们在这里只讨论这种形式,其表达式如下:

      

其中,f(i)为原始的信号,F(u)是DCT变换后的系数,N为原始信号的点数,c(u)可以认为是一个补偿系数,可以使DCT变换矩阵为正交矩阵。

三、二维DCT变换

       二维DCT变换其实是在一维DCT变换的基础上在做了一次DCT变换,其公式如下:

    

       由公式我们可以看出,上面只讨论了二维图像数据为方阵的情况,在实际应用中,如果不是方阵的数据一般都是补齐之后再做变换的,重构之后可以去掉补齐的部分,得到原始的图像信息,这个尝试一下,应该比较容易理解。

      另外,由于DCT变换高度的对称性,在使用Matlab进行相关的运算时,我们可以使用更简单的矩阵处理方式:

   

接下来利用Matlab对这个过程进行仿真处理:

clear;
clc;
X=round(rand(4)*100)   %产生随机矩阵
A=zeros(4);
for i=0:3
    for j=0:3
        if i==0
            a=sqrt(1/4);
        else
            a=sqrt(2/4);
        end            
        A(i+1,j+1)=a*cos(pi*(j+0.5)*i/4);
    end
end
Y=A*X*A'        %DCT变换
YY=dct2(X)      %Matlab自带的dct变换
X =

    42    66    68    66
    92     4    76    17
    79    85    74    71
    96    93    39     3


Y =

  242.7500   48.4317   -9.7500   23.5052
  -12.6428  -54.0659    7.4278   22.7950
   -6.2500   10.7158  -19.7500  -38.8046
   40.6852  -38.7050  -11.4653  -45.9341


YY =

  242.7500   48.4317   -9.7500   23.5052
  -12.6428  -54.0659    7.4278   22.7950
   -6.2500   10.7158  -19.7500  -38.8046
   40.6852  -38.7050  -11.4653  -45.9341

由上面的结果我们可以看出,我们采用的公式的方法和Matlab自带的dct变化方法结果是一致的,所以验证了我们方法的正确性。

      如果原始信号是图像等相关性较大的数据的时候,我们可以发现在变换之后,系数较大的集中在左上角,而右下角的几乎都是0,其中左上角的是低频分量,右下角的是高频分量,低频系数体现的是图像中目标的轮廓和灰度分布特性,高频系数体现的是目标形状的细节信息。DCT变换之后,能量主要集中在低频分量处,这也是DCT变换去相关性的一个体现。

      之后在量化和编码阶段,我们可以采用“Z”字形编码,这样就可以得到大量的连续的0,这大大简化了编码的过程。

二维DCT反变换

     在图像的接收端,根据DCT变化的可逆性,我们可以通过DCT反变换恢复出原始的图像信息,其公式如下:

     

      同样的道理,我们利用之前的矩阵运算公司可以推导出DCT反变换相应的矩阵形式:

      

      下面我们用Matlab对这个过程进行仿真:

clear;
clc;
X=[
    61    19    50    20
    82    26    61    45
    89    90    82    43
    93    59    53    97] %原始的数据
A=zeros(4);
for i=0:3
    for j=0:3
        if i==0
            a=sqrt(1/4);
        else
            a=sqrt(2/4);
        end            
        A(i+1,j+1)=a*cos(pi*(j+0.5)*i/4); %生成变换矩阵
    end
end
Y=A*X*A'   %DCT变换后的矩阵
X1=A'*Y*A  %DCT反变换恢复的矩阵
X =

    61    19    50    20
    82    26    61    45
    89    90    82    43
    93    59    53    97


Y =

  242.5000   32.1613   22.5000   33.2212
  -61.8263    7.9246  -10.7344   30.6881
  -16.5000  -14.7549   22.5000   -6.8770
    8.8322   16.6881  -35.0610   -6.9246


X1 =

   61.0000   19.0000   50.0000   20.0000
   82.0000   26.0000   61.0000   45.0000
   89.0000   90.0000   82.0000   43.0000
   93.0000   59.0000   53.0000   97.0000

我们可以看到反变换后无损的恢复了原始信息,所以证明了方法的正确性。但是在实际过程中,需要量化编码或者直接舍弃高频分量等处理,所以会出现一定程度的误差,这个是不可避免的。

五、分块DCT变换

      在实际的图像处理中,DCT变换的复杂度其实是比较高的,所以通常的做法是,将图像进行分块,然后在每一块中对图像进行DCT变换和反变换,在合并分块,从而提升变换的效率。具体的分块过程中,随着子块的变大,算法复杂度急速上升,但是采用较大的分块会明显减少图像分块效应,所以,这里面需要做一个折中,在通常使用时,大都采用的是8*8的分块。

      Matlab的 blkproc 函数可以帮我们很方便的进行分块处理,下面给出我们的处理过程:

clear;
clc;
X = imread('./lena.bmp');
X = double(X);
[a,b] = size(X);
Y = blkproc(X,[8,8],'dct2');
X1 = blkproc(Y,[8,8],'idct2');
figure
subplot(1,3,1);
imshow(uint8(X));title('原图');

subplot(1,3,2);
imshow(uint8(Y));title('分块DCT图');

subplot(1,3,3);
imshow(uint8(X1));title('分块DCT恢复图');

Y1 = dct2(X);
X10 = idct2(Y1);

figure
subplot(1,3,1);
imshow(uint8(X));title('原图');

subplot(1,3,2);
imshow(uint8(Y1));title('DCT变换图');

subplot(1,3,3);
imshow(uint8(X10));title('DCT反变换图')

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值