第二十二届华罗庚金杯少年数学邀请赛 决赛(初中二年级组)部分试题解答

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/LingLingQI_Leon/article/details/70919962

试题参见链接:
http://www.huabeisai.cn/upload/html/2017/03/11/guoxiayue0d53d2b8d4de41e582486ae13d45fb02.pdf

1.化简:

9+62+33+6=9+62+63=18+29+62(63)=18+29+62962=26

5.已知都是正整数,那么的最大值等于?
解答:
由p | q-1, 可知(p, q)=1;
由p | q-1, q | 3p-1 => p | 3p+q-1, q | 3p-1+q,即:p,q均为3p+q-1的约数,且p,q互素;
从而有:3p+q-1 = kpq(k为正整数);
即:k=3/q + 1/p - 1/pq <=3,k=1,2,3
(1)k=1的情形:
3p+q-1=pq
-> 3p-1=q(p-1)
->p-1 | 3p-1=3(p-1)+2
->p-1 | 2
-> p=3,2对应的有q=4,5
(2)k=2的情形:
3p+q-1=2pq
->q-1=p(2q-3)>=2q-3
->q<=2
->q=1,2对应的有p=0,1
(3)k=3的情形
3p+q-1=3pq
->q-1=p(3q-3)>=3q-3
->q<=1
->q=1与题设不符
故有三解(p,q)=(3,4),(2,5),(1,2)

9.已知,求的值。

解答:
———-(1)

另一方面:

带入(1)式可得到:

从而有a+b+c=0,1,-1;
很容易验证a+b+c确实可以取到0,1,-1三个值。比如:a+b+c=0的情形,可以设a=b=-c/2,易得,其他两种情况类似。

11.求证:任意的 5 个整数中, 必定有两个整数的平方差是 7 的倍数.
解答:
任意a,b有:

a2b2=(a+b)(ab)

记任意5个数
a1a2...a5

除以7的余数为
r1r2...r50ri6

(1)如果中存在两个数相等:
比如,显然有的平方差是7的倍数。
(2)如果互不相等:
则考虑下面10个数:
r1r2...r57r1...7r50ri6

上面10个数中前5个互不相等,因此后5个也互不相等,且10个数均在0-7之间,0-7之间最多只有8个不同的整数,因此,
ri,rj使ri=7rj

从而有的平方差是7的倍数。

待续…

展开阅读全文

没有更多推荐了,返回首页