Linroid的博客

Talk is cheap,show me the code.

机器学习/深度学习 算法集合

这里随记 机器学习/深度学习 相关算法,全部源自网络,并整合在这里,以期后面学习和整理。

LDA

监督学习类,线性判别分析(Linear Discriminant Analysis)

  • 主要目的

    降维度,减轻计算负担

  • 主要思想

    投影(降维度后)

    • 类内方差最小
    • 类外方差最大
  • 主要数学基础

    瑞利商
    广义瑞利商

此处输入图片的描述
此处输入图片的描述
此处输入图片的描述
此处输入图片的描述
此处输入图片的描述
此处输入图片的描述
此处输入图片的描述

PCA

非监督学习类,主成分分析(Principal components analysis)

  • 主要目的

降维度,减轻计算负担

  • 主要思想
  • 样本到投影直线(或者超平面)的距离足够近
  • 样本到投影直线(或者超平面)尽可能分开

此处输入图片的描述
此处输入图片的描述
此处输入图片的描述
此处输入图片的描述
此处输入图片的描述
此处输入图片的描述

最小二乘法

此处输入图片的描述

此处输入图片的描述

此处输入图片的描述

此处输入图片的描述

此处输入图片的描述

Gradient Descent

此处输入图片的描述
此处输入图片的描述
此处输入图片的描述
此处输入图片的描述
此处输入图片的描述
此处输入图片的描述

牛顿方法

此处输入图片的描述
此处输入图片的描述

同时可以参考一下知乎提问:最优化问题中,牛顿法为什么比梯度下降法求解需要的迭代次数更少?,其中最爱麦丽素的回答。

最大似然到EM

文章来源zouxy09的专栏

此处输入图片的描述
此处输入图片的描述
此处输入图片的描述
此处输入图片的描述
此处输入图片的描述

关于数学推导,可以进一步看原文。

另外EM(期望最大算法)的应用还包括GMM高斯混合模型,K-means聚类算法,HMM隐马尔可夫模型等)

GMM 高斯混合模型

高斯混合模型–GMM(Gaussian Mixture Model)

K-means 聚类算法

深入浅出K-Means算法
算法杂货铺——k均值聚类(K-means)

HMM 隐马尔可夫模型

一文搞懂HMM(隐马尔可夫模型)

BackPropagation (神经网络基础-反向传播)

此处输入图片的描述

此处输入图片的描述

此处输入图片的描述

此处输入图片的描述

此处输入图片的描述

此处输入图片的描述

此处输入图片的描述

此处输入图片的描述

此处输入图片的描述

核函数

这里取核函数的直观理解,来自知乎回答:

此处输入图片的描述
此处输入图片的描述
此处输入图片的描述

此处输入图片的描述
此处输入图片的描述
此处输入图片的描述

贝叶斯的通俗理解

朴素贝叶斯分类算法

贝叶斯网络模型

卷积神经网络各层分析

零基础入门深度学习系列文章

决策树和随机森林

GTB-梯度提升(gradient boosting)算法

主题模型(LDA) 亦可参考

集成学习原理小结

Word2Vec

集成学习Boosting&Bagging区别

xgboost入门

阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/Linux1s1s/article/details/79956748
上一篇Caffe MNIST 入门实例
下一篇Ubuntu16.0.4 伪分布式配置 Hadoop 2.6.5
想对作者说点什么? 我来说一句

凸优化_最优化_数学书籍集合

2017年11月16日 96.03MB 下载

Adaboost算法详解

2016年12月20日 609KB 下载

稀疏编码算法

2013年06月19日 431KB 下载

深度学习 课件

2018年05月17日 9.05MB 下载

没有更多推荐了,返回首页

关闭
关闭