算法系列文章1:约瑟夫环

问题:

0,1,2,...n这n个数排成一个圈, 从数字0开始,每次从这个圈里删除第m个数字.删除后从下一个数字开始,求出从这个圈里剩下的最后一个数字.

例如:0,1,2,3,4,5 m=3 最后剩下的是数字3.

分析:

首先,我们考虑是否能够按照平时最常规的方法(循环处理的方式进行求解)进行处理.虽然能够处理但时间复杂度应该比较高.但我们在这里也把代码写出来.大家可以参考一下.

典型的减少时间复杂度的算法就是动态规划法(以空间换取时间).动态规划法的关键一步就是需要找到状态转移方程.具体实现如算法2.

算法:

算法1,使用循环处理的方式,但这种方法时间复杂度较高.这种方法在leetcode上测试,如果输入规模较大,就会显示执行超时!

class solution{
public:
    int lastRemaining(int n, int m){
        vector<int> nums;
        int idx;
        
        for(int i = 0; i < n; i++){
             nums.push_back(n);
        }

        while(n > 1){
            idx = (idx+m)%n;
            nums.erase(nums.begin()+idx);
            n--;
        }

        return nums[0];
    }
};

算法2,

class solution{
public:
    int lastRemaining(int n, int m){
       return f(m, n); 
    }

    int f(int n, int m){
        int x;

        if (n == 1)
            return 1;

        x = f(n-1,m);
        
        return (m%n+x)%n;
    }
};

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值