# Ignatius and the Princess III

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 14352    Accepted Submission(s): 10102

Problem Description
"Well, it seems the first problem is too easy. I will let you know how foolish you are later." feng5166 says.

"The second problem is, given an positive integer N, we define an equation like this:
N=a[1]+a[2]+a[3]+...+a[m];
a[i]>0,1<=m<=N;
My question is how many different equations you can find for a given N.
For example, assume N is 4, we can find:
4 = 4;
4 = 3 + 1;
4 = 2 + 2;
4 = 2 + 1 + 1;
4 = 1 + 1 + 1 + 1;
so the result is 5 when N is 4. Note that "4 = 3 + 1" and "4 = 1 + 3" is the same in this problem. Now, you do it!"

Input
The input contains several test cases. Each test case contains a positive integer N(1<=N<=120) which is mentioned above. The input is terminated by the end of file.

Output
For each test case, you have to output a line contains an integer P which indicate the different equations you have found.

Sample Input
4 10 20

Sample Output
5 42 627

#include <stdio.h>
#define MAX 150

int main()
{
int c1[MAX] , c2[MAX] , n;
while(~scanf("%d",&n))
{
for(int i = 0 ; i <= n ; ++i)
{
c1[i] = 1 ;
c2[i] = 0 ;
}

for(int i = 2 ; i <= n ; ++i)
{
for(int j = 0 ; j <= n ; ++j)
{
for(int k = 0 ; j+k <= n ; k+=i)
{
c2[j+k] += c1[j] ;
}
}
for(int j = 0 ; j <= n ; ++j)
{
c1[j] = c2[j] ;
c2[j] = 0 ;
}
}
printf("%d\n",c1[n]);
}
return 0 ;
}