RabbitMQ的介绍

一、消息队列MQ

1.1. MQ的相关概念

MQ(message queue),本质是个队列,FIFO先进先出,只不过队列中存放的内容是message而已,还是一种跨进程的通信机制,用于上下游传递消息。在互联网架构中,MQ是一种非常常见的上下游”逻辑解耦+物理解耦“的消息通信服务。使用了MQ之后,消息发送上游只需要依赖MQ,不用依赖其他服务。

1.2.为什么要用MQ

1.流量削峰

​ 如果订单系统最多能处理一万次订单,这个处理能力应付正常时段的下单时绰绰有余,正常时段我们下单一秒后就能返回结果。但是在高峰期,如果有两万次下单,操作系统是处理不了的,只能限制订单超过一万后不允许用户下单。使用消息队列做缓冲,我们可以取消这个限制,把一秒内下的订单分散成一段时间来处理,这时有些用户可能在下单十几秒后才能下单成功的操作,但是比不能下单的体验要好。

image-20220623093804896

2.应用解耦

​ 在电商应用中,应用中有订单系统、库存系统、物流系统、支付系统。用户创建订单后,如果耦合调用库存系统、物流系统、支付系统,任何一个子系统出了故障,都会造成下单操作异常。当转变成基于消息队列的方式后,系统间调用的问题就会减少很多,比如物流系统因为发生了故障,需要几分钟来修复。在这几分钟的时间里,物流系统要处理的内存被缓存在消息队列中,用户的下单操作可以正常完成。当物流系统恢复后,继续处理订单信息即可,其中用户感受不到物流系统的故障,提升系统的可用性。

image-20220623094339785

3.异步处理

​ 有些服务间调用是异步的,例如A调用B,B需要花费很长时间执行,但是A需要知道B什么时候可以执行完,以前一般有两种方式,A过一段时间去调用B的查询api查询。或者A提供一个callback api,B执行完之后调用api通知A服务。这两种方式都不是很优雅,使用消息总线,可以很方便解决这个问题,A调用B服务后,只需要监听B处理完成的消息,当B处理完成后,会发送一条消息给MQ,MQ会将此消息转服给A服务。这样A服务既不用循环调用B的查询api,也不用提供callback api。同样B服务也不用做这些操作。A服务还能及时的得到异步处理成功的消息。

image-20220623095235989

1.3.MQ的分类

1.3.1.ActiveMQ
	ActiveMQ 是Apache出品,最流行的,能力强劲的开源消息总线。它是一个完全支持JMS规范的的消息中间件。丰富的API,多种集群架构模式让ActiveMQ在业界成为老牌的消息中间件,在中小型企业颇受欢迎!
	优点:单机吞吐量万级,时效性ms级,可用性高,基于主从架构实现高可用性,消息可靠,较低的概率丢失数据。
	缺点:5.x版本维护越来越少,高吞吐量场景较少使用。
1.3.2.Kafka
	Kafka是LinkedIn开源的分布式发布-订阅消息系统,目前归属于Apache顶级项目。Kafka主要特点是基于Pull的模式来处理消息消费,
	追求高吞吐量,一开始的目的就是用于日志收集和传输。0.8版本开始支持复制,不支持事务,对消息的重复、丢失、错误没有严格要求,
	适合产生大量数据的互联网服务的数据收集业务。
	优点:性能卓越,单机写入TPS约在百万台/秒,最大的优点,就是吞吐量高。时效性ms级可用性非常搞,kafka是分布式的,一个数据多个副本,少数机器宕机,不会丢失数据,不会导致不可用,消费者采用Pull方式获取消息,消息有序,通过控制能够保证所有消息被消费且仅被消费一次;有优秀的第三方Kafka Web管理界面Kafka-Manager;在日志领域比较成熟,被多加公司和多个开源项目使用;功能支持:功能呢个较为简单,主要支持简单的MQ功能,在大数据领域的实时计算以及日志采集被大亏摸使用。
	缺点:Kafka单机超过64分队列/分区,Load会发生明显的飙高现象,队列越多,load越高,发送消息响应时间边长,使用短轮询方式,实时性取决于轮询间隔时间,消费失败不支持重试;支持消息顺序,但是一台代理宕机后,就会产生消息乱序,社区更新较慢。
1.3.3.RocketMQ
	RocketMQ是阿里开源的消息中间件,它是纯Java开发,具有高吞吐量、高可用性、适合大规模分布式系统应用的特点。RocketMQ思路起
	源于Kafka,但并不是Kafka的一个Copy,它对消息的可靠传输及事务性做了优化,目前在阿里集团被广泛应用于交易、充值、流计算、消
息推送、日志流式处理、binglog分发等场景。
	优点:单机吞吐量十万级,可用性非常高,分布式架构,消息可以做到0丢失,MQ功能较为完善,还是分布式的,扩展性好,支持10亿级别的消息堆积,不会因为堆积导致性能下降。
	缺点:支持的客户端语言不多,目前是java及c++,其中c++不成熟。社区活跃度一般,没有在MQ核心中去实现JMS等接口,有些系统要迁移需要修改大量代码。
1.3.4.RabbitMQ
	RabbitMQ是使用Erlang语言开发的开源消息队列系统,基于AMQP协议来实现。AMQP的主要特征是面向消息、队列、路由(包括点对点和
发布/订阅)、可靠性、安全。AMQP协议更多用在企业系统内对数据一致性、稳定性和可靠性要求很高的场景,对性能和吞吐量的要求还在其次。
	优点:由于erlang语言的高并发特性,性能较好;吞吐量到万级,MQ功能比较完备,健壮、稳定、易用、跨平台、支持多种语言,支持AJAX文档齐全,开源提供的管理界面非常棒,用起来很好用,社区活跃度高;更新频率相当高。
	缺点:商业版需要收费,学习成本较高。

RabbitMQ比Kafka可靠,Kafka更适合IO高吞吐的处理,一般应用在大数据日志处理或对实时性(少量延迟),可靠性(少量丢数据)要求稍低的场景使用,比如ELK日志收集。

1.4. MQ的选择

1.4.1.Kafka

​ Kafka主要特点是基于Pull的模式来处理消息消费,追求高吞吐量,一开始的目的就是用于日志手机和传输,适合产生大量数据的互联网服务的数据收集业务。大型公司建议可以选用,如果有日志采集功能,肯定是首选kafka了。

1.4.2.RocketMQ

​ 天生为金融互联网领域而生,对于可靠性要求很高的场景,尤其是电商里面的订单扣款,以及业务削峰,在大量交易涌入时,后端可能无法及时处理的情况。Rocket在稳定性上可能更值得信赖,这些业务场景在阿里双11已经经历了多次考验。

1.4.3.RabbitMQ

​ 结合erlang语言本身的并发优势,性能好时效性微秒级,社区活跃度也比较高,管理界面用起来十分方便,如果你的数据量没有那么大,中小型公司优先选择功能比较完备的RabbitMQ。

二、RabbitMQ

2.1.RabbitMQ的概念

RabbitMQ 是实现了高级消息队列协议(AMQP)的开源消息代理软件(亦称面向消息的中间件)。RabbitMQ 服务器是用 Erlang 语言编写的,而群集和故障转移是构建在开放电信平台框架上的。所有主要的编程语言均有与代理接口通讯的客户端库。

PS: 也可能直接问什么是消息队列?消息队列就是一个使用队列来通信的组件。

RabbitMQ是一个消息队列:它接收并转发消息。基于AMQP协议,erlang语言开发,是部署最广泛的开源消息中间件,是最受欢迎的开源消息中间件之一。

2.2.四大核心概念

生产者:产生数据发送消息的程序员是生产者

交换机:交换机是RabbitMQ非常重要的一个部件,一方面它接收来自生产者的消息,另一方面它将消息推送到队列中。交换机必须确切知道如何处理它接收到的消息,是将这些消息推送到特定队列还是推送到多个队列,亦或者是把消息丢弃,这个得由交换机类型决定。

队列:队列是RabbitMQ内部使用的一种数据结构,尽管消息流经RabbitMq和应用程序,但它们只能存储在队列中。队列仅受主机的内存和磁盘限制的约束,本质上是一个大的消息缓冲区。许多生产者可以将消息发送到一个队列,许多消费者可以尝试从一个队列接收数据。这就是我们使用队列的方式

消费者:消费与接收具有相似的含义。消费者大多时候是一个等待接收到消息的程序。请注意生产者,消费者,和消息中间件很多时候并不在同一机器上。同一个应用程序既可以是生产者又可以是消费者。

image-20220623104659973

2.3.各个名词介绍

image-20220623105429757

Broker:接收和分发消息的应用,RabbitMQ Server 就是 Message Broker。

Virtual host:出于多用户和安全因素设计的,把 AMQP 的基本组件划分到一个虚拟的分组中,类似于网络中的 namespace 概念。当多个不同的用户使用同一个 RabbitMQ server 提供的服务时,可以划分出多个 vhost,每个用户在自己的 vhost 创建 exchange/queue 等。

Connection:publisher/consumer 和 broker 之间的 TCP 连接。

Channel:如果每一次访问 RabbitMQ 都建立一个 Connection,在消息量大的时候建立 TCP Connection 的开销将是巨大的,效率也较低。Channel 是在 connection 内部建立的逻辑连接,如果应用程序支持多线程,通常每个 thread 创建单独的 channel 进行通讯,AMQP method 包含了 channel id 帮助客户端和 message broker 识别 channel,所以 channel 之间是完全隔离的。Channel 作为轻量级的 Connection 极大减少了操作系统建立 TCP connection 的开销。

Exchange:message 到达 broker 的第一站,根据分发规则,匹配查询表中的 routing key,分发消息到 queue 中去。常用的类型有:direct (point-to-point), topic (publish-subscribe) and fanout (multicast)。

Queue:消息最终被送到这里等待 consumer 取走。

Binding:exchange 和 queue 之间的虚拟连接,binding 中可以包含 routing key,Binding 信息被保存到 exchange 中的查询表中,用于 message 的分发依据。

2.3.RabbitMQ的安装

2.3.1.下载

官网下载地址:https://www.rabbitmq.com/download.html

这里选择的版本号(注意这两版本要求)

rabbitmq-server-3.8.8-1.el7.noarch.rpm

GitHub:https://github.com/rabbitmq/rabbitmq-server/releases/tag/v3.8.8

加速下载:https://packagecloud.io/rabbitmq/rabbitmq-server/packages/el/7/rabbitmq-server-3.8.8-1.el7.noarch.rpm

erlang-21.3.8.21-1.el7.x86_64.rpm

官网:https://www.erlang-solutions.com/downloads/

加速:https://packagecloud.io/rabbitmq/erlang/packages/el/7/erlang-21.3.8.21-1.el7.x86_64.rpm

2.3.2.安装

上传到 /opt 目录下

rpm -ivh erlang-21.3.8.21-1.el7.x86_64.rpm
yum install socat -y
rpm -ivh rabbitmq-server-3.8.8-1.el7.noarch.rpm

2.3.3.启动
/sbin/service rabbitmq-server start
查看启动状态
/sbin/service rabbitmq-server status

image-20220623112944893

安装web管理插件

首先关闭rabbitmq服务。

/sbin/service rabbitmq-server stop
rabbitmq-plugins enable rabbitmq_management

image-20220623113144589

重启服务

/sbin/service rabbitmq-server start

访问rabbitmq

关闭防火墙

#查看防火墙状态
systemctl status firewalld
#关闭防火墙
systemctl stop firewalld
systemctl enable firewalld(不自启防火墙)

访问rabbitmq

#ip+端口号15672
http://192.168.200.131:15672/

在这里插入图片描述

输入账号:guest 密码guest

显示

image-20220623114415980

因此要添加一个新的用户

创建账号

#(账号admin)  (密码123)
rabbitmqctl add_user admin 123  

image-20220623115450190

设置用户角色

rabbitmqctl set_user_tags admin administrator

image-20220623115512647

设置用户权限

set_permissions [-p <vhostpath>] <user> <conf> <write>  <read>
rabbitmqctl set_permissions -p "/" admin ".*" ".*" ".*"
#用户user_admin 具有/vhost1这个virtual host中所有资源的配置、写、读权限
#查看当前用户和角色
rabbitmqctl list_users

image-20220623115525647

image-20220623115536445

输入账号:admin 密码:123后成功登录

image-20220623115616561

三、RabbitMQ的Hello World(Java)

在下图中,“P” 是生产者,“ C” 是消费者。中间的框是一个队列 RabbitMQ 代表使用者保留的消息缓冲区。

连接的时候,需要开启 5672 端口。

image-20220623120655044

3.1.依赖

<!--指定 jdk 编译版本-->
<build>
    <plugins>
        <plugin>
            <groupId>org.apache.maven.plugins</groupId>
            <artifactId>maven-compiler-plugin</artifactId>
            <configuration>
                <source>8</source>
                <target>8</target>
            </configuration>
        </plugin>
    </plugins>
</build>
<dependencies>
    <!--rabbitmq 依赖客户端-->
    <dependency>
        <groupId>com.rabbitmq</groupId>
        <artifactId>amqp-client</artifactId>
        <version>5.8.0</version>
    </dependency>
    <!--操作文件流的一个依赖-->
    <dependency>
        <groupId>commons-io</groupId>
        <artifactId>commons-io</artifactId>
        <version>2.6</version>
    </dependency>
</dependencies>

image-20220623120828431

3.2.消息生产者

public class Producer {
    //队列名称
    public static final String QUEUE_NAME = "hello";

    //发消息
    public static void main(String[] args) throws IOException, TimeoutException {
        //创建工厂
        ConnectionFactory factory = new ConnectionFactory();
        //工厂IP 连接RabbitMQ的队列
        factory.setHost("192.168.200.131");
        //用户名
        factory.setUsername("admin");
        //密码
        factory.setPassword("123");
        //创建连接
        Connection connection = factory.newConnection();
        //获取信道
        Channel channel = connection.createChannel();
        /*
        * 生成一个队列
        * 1.队列名称
        * 2.队列里面的消息是否持久化(磁盘) 默认情况下消息存储在内存中
        * 3.该队列是否只供一个消费者进行消费 是否进行消息共享,true可以多个消费者消费 false:只能一个消费者消费
        * 4.是否自动删除 最后一个消费者断开连接之后该队列是否自动删除 true自动删除,false不自动删除
        * 5.其他参数
        * */
        channel.queueDeclare(QUEUE_NAME,false,false,false,null);
        //发消息
        String message = "hello world";
        /*
        * 发送一个消费
        * 1.发送到哪个交换机
        * 2.路由的Key值是哪个 本次是队列的名称
        * 3.其他参数信息
        * 4.发送消息的消息体
        * */
        channel.basicPublish("",QUEUE_NAME,null,message.getBytes());
        System.out.println("消息发送完毕");
    }
}

3.3.消息消费者

public class Consumer {
    //队列名称
    public static final String QUEUE_NAME = "hello";
    //接收消息
    public static void main(String[] args) throws IOException, TimeoutException {
        //创建连接工厂
        ConnectionFactory factory = new ConnectionFactory();
        factory.setHost("192.168.200.131");
        factory.setUsername("admin");
        factory.setPassword("123");
        Connection connection = factory.newConnection();
        Channel channel = connection.createChannel();

        //声明  接收消息
        DeliverCallback deliverCallback = (consumerTag,message)->{
            System.out.println(new String(message.getBody()));
        };

        //取消消息时的回调
        CancelCallback cancelCallback = consumer -> {
            System.out.println("消费消息被中断");
        };

        /*
        * 消费者消费消息
        * 1.消费哪个队列
        * 2.消费成功之后是否要自动应答 true 代表的自动应答 false 代表手动应答
        * 3.消费者未成功消费的回调
        * 4.消费者取录消费的回调
        * */
        channel.basicConsume(QUEUE_NAME,true,deliverCallback, cancelCallback);

    }
}

四、Work Queues

工作队列(又称任务队列)的主要思想是避免立即执行资源密集型任务。我们把任务封装为消息并将其发送到队列。在后台运行的工作进程将弹出任务并最终执行作业。当有多个工作线程时,这些工作线程将一起处理这些任务。

image-20220623153316502

4.1.轮询分发消息

4.1.1.启动两个工作线程
public class Work01 {
    //队列的名称
    public static final String QUEUE_NAME = "hello";

    //接收消息
    public static void main(String[] args) throws Exception {
        Channel channel = RabbitMqUtils.getChannel();



        //消息的接收
        DeliverCallback deliverCallback = (consumerTag,message)->{
            System.out.println("接收到的消息:"+new String(message.getBody()));
        };
        //消息接收被取消
        CancelCallback cancelCallback = (consumerTag) -> {
            System.out.println(consumerTag+"消息者取消消费接口回调逻辑");
        };

        System.out.println("C1等待接收消息....");
        channel.basicConsume(QUEUE_NAME,true,deliverCallback,cancelCallback);
    }
}
public class Work02 {
    //队列的名称
    public static final String QUEUE_NAME = "hello";

    //接收消息
    public static void main(String[] args) throws Exception {
        Channel channel = RabbitMqUtils.getChannel();



        //消息的接收
        DeliverCallback deliverCallback = (consumerTag,message)->{
            System.out.println("接收到的消息:"+new String(message.getBody()));
        };
        //消息接收被取消
        CancelCallback cancelCallback = (consumerTag) -> {
            System.out.println(consumerTag+"消息者取消消费接口回调逻辑");
        };

        System.out.println("C2等待接收消息....");
        channel.basicConsume(QUEUE_NAME,true,deliverCallback,cancelCallback);
    }
}
4.1.2.启动一个发送线程
public class Task01 {
    //队列名称
    public static final String QUEUE_NAME = "hello";

    //发送大量消息
    public static void main(String[] args) throws Exception {
        Channel channel = RabbitMqUtils.getChannel();

        //队列的声明
        channel.queueDeclare(QUEUE_NAME,false,false,false,null);
        //从控制台当中接收信息
        Scanner sc = new Scanner(System.in);
        while(sc.hasNext()){
            String message = sc.next();
            channel.basicPublish("",QUEUE_NAME,null,message.getBytes());
            System.out.println("发送消息完成:"+message);
        }
    }
}
4.1.3.结果展示

image-20220623160854356

image-20220623160906382

image-20220623160838291

4.2.消息应答

4.2.1. 概念

​ 消费者完成一个任务可能需要一段时间,如果其中一个消费者处理一个长的任务并仅只完成了部分突然它挂掉了,会发生什么情况。RabbitMQ一旦向消费者传递了一条消息,便立即将该消息标记为删除。在这种情况下,突然有个消费者挂掉了,我们将丢失正在处理的消息。以及后续发送给该消费者的消息,因为它无法接收到。

​ 为了保证消息在发送过程中不丢失,rabbitmq引入了消息应答机制,消息应答就是:消费者在接收到消息并且处理该消息之后,告诉rabbitmq它已经处理了,rabbitmq可以把该消息删除了。

4.2.2.自动应答

​ 消息发送后立即被人为已经传送成功,这种模式需要在高吞吐量和数据传输安全性方面做出权衡,因为这种模式如果消息在接收到之前,消费者那边出现连接或者channel关闭,那么消息就丢失了,当然另一方面这种模式消费者那边可以传递过载的消息,没有对传递的消息数量进行限制,当然这样有可能使得消费者这边由于接收太多还来不及处理的消息,到这这些消息的积压,最终使得内存耗尽,最终这些消费者线程被操作系统杀死,所以这种模式仅使用在消费者可以高效并以某种速率能够处理这些消息的情况下使用。

4.2.3.消息手动应答的方法

手动消息应答的方法
Channel.basicAck (用于肯定确认):RabbitMQ 已知道该消息成功被处理,可以将其丢弃了。

Channel.basicNack (用于否定确认)

Channel.basicReject (用于否定确认):与 Channel.basicNack 相比少一个参数,不处理该消息了直接拒绝,可以将其丢弃了。

4.2.4.Multiple的解释

手动应答的好处是可以批量应答并且减少网络拥堵 。

image-20220623163038982

true 代表批量应答 channel 上未应答的消息:比如说 channel 上有传送 tag 的消息 5、6、7、8, 当前 tag 是 8 那么此时 5-8 的这些还未应答的消息都会被确认收到消息应答。

false 同上面相比只会应答 tag=8 的消息, 5、6、7 这三个消息依然不会被确认收到消息应答。

image-20220623163057917

4.2.5.消息自动重新入队

​ 如果消费者由于某些原因失去连接(其通道已关闭,连接已关闭或TCP连接丢失),导致消息未放ACK确认,RabbitMQ将了解到消息未完全处理,并将对其重新排列。如果此时其他消费者可以处理,它将很快将其重新分发给另一个消费者。这样,即使某个消费者偶尔死亡,也可以确保不会丢失任何消息。

image-20220623165432756

4.2.6.消息手动应答代码

​ 默认消息采用的是自动应答,所以我们想要实现消息消费过程中不丢失,需要把自动应答改为手动应答。

消费者在上面代码的基础上增加了以下内容:

channel.basicAck(delivery.getEnvelope().getDeliveryTag(), false);

在basicConsume()方法中第二个参数设置为false。

消息生产者

public class Task2 {
    //队列名称
    public static final String TASK_QUEUE_NAME = "ack_queue";

    public static void main(String[] args) throws Exception {
        Channel channel = RabbitMqUtils.getChannel();
        //声明队列
        channel.queueDeclare(TASK_QUEUE_NAME,false,false,false,null);
        //从控制台中输入信息
        Scanner scanner = new Scanner(System.in);
        while(scanner.hasNext()){
            String message = scanner.next();
            channel.basicPublish("",TASK_QUEUE_NAME,null,message.getBytes("UTF-8"));
            System.out.println("生产者发出消息:" + message);
        }
    }
}

消息消费者01

public class Work03 {

    public static final String TASK_QUEUE_NAME = "ack_queue";

    //接收消息
    public static void main(String[] args) throws Exception {
        Channel channel = RabbitMqUtils.getChannel();
        System.out.println("C1等待接收消息处理时间较短");
        DeliverCallback deliverCallback = (consumerTag,message)->{
            //沉睡1s
            SleepUtils.sleep(1);
            System.out.println("接收到的消息:" + new String(message.getBody(), "UTF-8"));
            //手动应答
            /*
            * 1.消息的标记 tag
            * 2.是否批量应答
            * */
            channel.basicAck(message.getEnvelope().getDeliveryTag(),false);
        };
        //采用手动应答
        boolean autoAck = false;
        channel.basicConsume(TASK_QUEUE_NAME,autoAck,deliverCallback,(consumerTag->{
            System.out.println(consumerTag+"消费者取消消费接口回调逻辑");
        }));
    }
}

消息消费者02

public class Work04 {

    public static final String TASK_QUEUE_NAME = "ack_queue";

    //接收消息
    public static void main(String[] args) throws Exception {
        Channel channel = RabbitMqUtils.getChannel();
        System.out.println("C2等待接收消息处理时间较短");
        DeliverCallback deliverCallback = (consumerTag,message)->{
            //沉睡1s
            SleepUtils.sleep(30);
            System.out.println("接收到的消息:" + new String(message.getBody(), "UTF-8"));
            //手动应答
            /*
            * 1.消息的标记 tag
            * 2.是否批量应答
            * */
            channel.basicAck(message.getEnvelope().getDeliveryTag(),false);
        };
        //采用手动应答
        boolean autoAck = false;
        channel.basicConsume(TASK_QUEUE_NAME,autoAck,deliverCallback,(consumerTag->{
            System.out.println(consumerTag+"消费者取消消费接口回调逻辑");
        }));
    }
}

正常情况下消息发送方发送两个消息,C1 和 C2 分别接收到消息并进行处理。

image-20220623173333841

在发送者发送消息 dd,发出消息之后的把 C2 消费者停掉,按理说该 C2 来处理该消息,但是由于它处理时间较长,在还未处理完,也就是说 C2 还没有执行 ack 代码的时候,C2 被停掉了,此时会看到消息被 C1 接收到了,说明消息 dd 被重新入队,然后分配给能处理消息的 C1 处理了。

image-20220623173741996

image-20220623173752258

image-20220623173804578

image-20220623173824983

image-20220623173838168

image-20220623173851132

4.3.RabbitMQ持久化

4.3.1.概念

​ 如何保障当RabbitMQ服务停掉以后消息生产者发送过来的消息不丢失。默认情况下RabbitMQ退出或由于某种原因崩溃时,它忽视队列和消息,除非告知它不要这样做。确保消息不会丢失需要做两件事:我们需要将队列和消息都标记为持久化。

4.3.2.队列如何实现持久化

​ 如果创建队列时是非持久化的,那么rabbitmq重启的话,该队列就会被删除掉,如果要队列实现持久化,需要在声明队列的时候把durable参数设置为持久化。

//让队列持久化
boolean durable = true;
//声明队列
channel.queueDeclare(TASK_QUEUE_NAME, durable, false, false, null);

注意:如果之前声明的队列不是持久化的,需要把原先队列先删除,或者重新创建一个持久化的队列,不然就会出现错误。

image-20220623175007011

以下为控制台中持久化与非持久化队列的 UI 显示区

image-20220623175116254

这个时候即使重启rabbitmq队列也依然存在。

4.3.3.消息实现持久化

要想实现消息持久化需要在消息生产者修改代码,MessageProperties.PERSISTENT_TEXT_PLAIN 添加这个属性。

image-20220623174741416

将消息标记为持久化并不能完全保证不会丢失消息。尽管它告诉 RabbitMQ 将消息保存到磁盘,但是这里依然存在当消息刚准备存储在磁盘的时候但是还没有存储完,消息还在缓存的一个间隔点。此时并没有真正写入磁盘。持久性保证并不强,但是对于我们的简单任务队列而言,这已经绰绰有余了。

4.3.4.不公平分发

默认情况下RabbitMQ分发消息采用的是轮询分发,但是在某种场景下这种策略并不是很好,比方说有两个消费者在处理任务,其中有个消费者1处理任务的速度非常快,而另外一个消费者2处理速度却很慢,这个时候我们还是采用轮询分发的话就会导致处理速度快的消费者很大一部分时间处于空闲状态,而处理速度慢的消费者一直在干活,这种分配方式在这种情况下就是不好的,但是RabbitMQ并不知道这种情况,它已让很公平的进行分发。

为了避免这种情况,我们可以设置channel.basicQos(1);(在消费者处修改)

修改完之后,可以看到以下显示。

image-20220623180605112

image-20220624085758420

image-20220624085720164

image-20220624085739406

image-20220624085820904

4.3.5.预取值分发

带权消息的分发,本来消息的发送就是异步发送的,在任何时候,channel上肯定不止只有一个消息,另外来自消费者的手动确认本质上也是异步的。因此这里就存在一个未确认的消息缓冲区,因此希望开发人员能限制此缓冲区的大小,以避免缓冲区里面无限制的未确认消息问题。这个时候就可以通过使用basic.qos方法设置“预取计数”值来完成。

该值定义通道上允许的未确认消息的最大数量。一旦数量达到配置的数量, RabbitMQ 将停止在通道上传递更多消息,除非至少有一个未处理的消息被确认,例如,假设在通道上有未确认的消息 5、6、7,8,并且通道的预取计数设置为 4,此时 RabbitMQ 将不会在该通道上再传递任何消息,除非至少有一个未应答的消息被 ack。比方说 tag=6 这个消息刚刚被确认 ACK,RabbitMQ 将会感知 这个情况到并再发送一条消息。消息应答和 QoS 预取值对用户吞吐量有重大影响。

通常,增加预取值将提高向消费者传递消息的速度。虽然自动应答传输消息速率是最佳的,但是,在这种情况下已传递但尚未处理的消息的数量也会增加,从而增加了消费者的 RAM 消耗。应该小心使用具有无限预处理的自动确认模式或手动确认模式,消费者消费了大量的消息如果没有确认的话,会导致消费者连接节点的内存消耗变大,所以找到合适的预取值是一个反复试验的过程,不同的负载该值取值也不同 100 到 300 范 围内的值通常可提供最佳的吞吐量,并且不会给消费者带来太大的风险。

预取值为 1 是最保守的。当然这将使吞吐量变得很低,特别是消费者连接延迟很严重的情况下,特别是在消费者连接等待时间较长的环境 中。对于大多数应用来说,稍微高一点的值将是最佳的。

预取值,表示在消费者处堆积的消息数量,而不会护理消息的数量。

image-20220624092852421

image-20220624093337317

五.发布确认

5.1.发布确认原理

​ 生产者将信道设置成confirm模式,一旦信道进入confirm模式,所有在该信道上面发布的消息都将会被指派一个唯一的ID(从1开始),一旦消息被投递到所有匹配的队列之后,broker就会发送一个确认给生产者(包含消息的唯一ID),这就使得生产者知道消息已经正确达到目的队列了,如果消息和队列是可持久化的,那么确认消息会在将消息写入磁盘之后发出,broker回传给生产者的确认消息中delivery-tag域包含了确认消息的序列号,此外broker也可以设置basic.ack的multiple域,表示到这个序列号之前的所有消息都已经得到了处理。

​ confirm模式最大的好处在于他是异步的,一旦发布一条消息,生产者应用程序就可以在等信道返回确认的同时继续发送下一条消息,当消息最终得到确认之后,生产者应用便可以通过回调方法来处理该确认消息,如果RabbitMQ因为自身内部错误导致消息丢失,就会发送一条nack消息,生产者应用程序同样可以在回调方法中处理nack消息。

image-20220624095250906

5.2.发布确认的策略

开启发布确认的方法:发布确认默认是没有开启的,如果要开启,需要在生产者调用方法confirmSelect()方法,每当你想要使用发布确认,都需要在channel上调用该方法。

        channel.confirmSelect();
5.2.1.单个确认发布

这是一种简单的确认方式,它是一种同步确认发布的方式,也就是发布一个消息之后只有它被确认发布,后续的消息才能继续发布,waitForConfirmsOrDie(long) 这个方法只有在消息被确认的时候才返回,如果在指定时间范围内这个消息没有被确认那么它将抛出异常。

这种确认方式有一个最大的缺点就是:发布速度特别的慢,因为如果没有确认发布的消息就会阻塞所有后续消息的发布,这种方式最多提供每秒不超过数百条发布消息的吞吐量。当然对于某些应用程序来说这可能已经足够了。

//单独确认消息
    private static void publicMessageIndividually() throws Exception {
        Channel channel = RabbitMqUtils.getChannel();
        String queueName = UUID.randomUUID().toString();
        channel.queueDeclare(queueName,true,false,false,null);
        //开启发布确认
        channel.confirmSelect();
        //开始时间
        long begin = System.currentTimeMillis();
        for (int i = 0; i < MESSAGE_COUNT; i++) {
            String message = i + "";
            channel.basicPublish("",queueName,null,message.getBytes());
            //单个消息就马上进行发布确认
            boolean flag = channel.waitForConfirms();
            if(flag){
                System.out.println("消息发送成功");
            }
        }
        //结束时间
        long end = System.currentTimeMillis();
        System.out.println("发布"+MESSAGE_COUNT+"个单独确认消息,耗时"+(end-begin)+"ms");
    }
5.2.2.批量确认发布

​ 单个确认发布的方式非常慢,与单个等待确认消息相比,先发布一批消息然后一起确认可以极大地提高吞吐量,当然这种方式的缺点就是:当发生故障导致发布出现问题时,不知道是哪个消息出现问题了,我们必须将整个批处理保存在内存中,以记录重要的信息而后重新发布消息。当然这种方案仍然是同步的,也一样阻塞消息的发布。

 //批量发布确认
    public static void publicMessageBatch() throws Exception {
        Channel channel = RabbitMqUtils.getChannel();
        String queueName = UUID.randomUUID().toString();
        channel.queueDeclare(queueName,true,false,false,null);
        //开启发布确认
        channel.confirmSelect();
        //开始时间
        long begin = System.currentTimeMillis();

        //批量确认消息大小
        int batchSize = 1000;



        for (int i = 0; i < MESSAGE_COUNT; i++) {
            String message = i + "";
            channel.basicPublish("",queueName,null,message.getBytes());
            //判断达到100条消息的时候 批量确认一次
            if( i % batchSize == 0){
                channel.waitForConfirms();
            }
        }
        //结束时间
        long end = System.currentTimeMillis();
        System.out.println("发布"+MESSAGE_COUNT+"个批量确认消息,耗时"+(end-begin)+"ms");
    }
5.2.3.异步确认发布

​ 异步确认编程逻辑比单个确认发布和批量确认发布要发咋,但是性价比最高,无论是可靠性还是效率,它是利用回调函数来达到消息可靠性传递的,这个中间件也是通过函数回调来保证是否投递成功。

image-20220624105531859

    //异步确认发布
    public static void publicMessageAsync() throws Exception {
        Channel channel = RabbitMqUtils.getChannel();
        String queueName = UUID.randomUUID().toString();
        channel.queueDeclare(queueName,true,false,false,null);
        //开启发布确认
        channel.confirmSelect();

        /*
        * ConcurrentSkipListMap<Long,String> outstandingConfirms;
        * 1.线程安全有序的一个哈希表 适用于高并发的情况下
        * 2.轻松批量删除条目 只要给到序号
        * 3.支持高并发(多线程)
        * */
        ConcurrentSkipListMap<Long,String> outstandingConfirms = new ConcurrentSkipListMap<>();

        //开始时间
        long begin = System.currentTimeMillis();

        //消息确认成功 回调函数
        ConfirmCallback ackCallback = (deliveryTag,multiple) ->{
            if(multiple) {
                //2.删除掉已经确认的消息 剩下的就是未确认的消息
                ConcurrentNavigableMap<Long, String> confirmed = outstandingConfirms.headMap(deliveryTag);
                confirmed.clear();
            }else{
                outstandingConfirms.remove(deliveryTag);
            }
            System.out.println("确认的消息:" + deliveryTag);
        };
        /*
        * 1.消息的标记
        * 2.是否为批量确认
        * */
        ConfirmCallback nackCallback = (deliveryTag,multiple) ->{
            String message = outstandingConfirms.get(deliveryTag);
            System.out.println("未确认的消息是:"+message+"::::::::::::::::未确认的消息tag:" + deliveryTag);
        };
        //准备消息的监听器 监听哪些消息成功了,哪些消息失败了
        /*
        * 1.监听哪些消息成功了
        * 2.监听哪些消息失败了
        * */
        channel.addConfirmListener(ackCallback,nackCallback);  //异步通知
        //批量发送消息
        for (int i = 0; i < MESSAGE_COUNT; i++) {
            String message = i + "";
            channel.basicPublish("",queueName,null,message.getBytes());
            //1.此处记录下所有要发送的消息  消息的总和
            outstandingConfirms.put(channel.getNextPublishSeqNo(),message);
        }
        //结束时间
        long end = System.currentTimeMillis();
        System.out.println("发布"+MESSAGE_COUNT+"个异步确认消息,耗时"+(end-begin)+"ms");
    }
5.2.4.如何处理异步未确认消息

​ 最好的解决的解决方法就是把未确认的消息放到一个基于内存的能被发布线程访问的队列,比如说用ConcurrentLinkedQueue这个队列在confirm callbacks与发布线程之间进行消息的传递。

1.先声明ConcurrentSkipListMap<key,value>。

2.在批量发送消息处记录所有要发送的消息

3.在消息确认成功回调函数处将成功确认的消息删除,剩下的就是未确认的消息

4.在消息确认失败回调函数处打印出未确认的消息

        /*
        * ConcurrentSkipListMap<Long,String> outstandingConfirms;
        * 1.线程安全有序的一个哈希表 适用于高并发的情况下
        * 2.轻松批量删除条目 只要给到序号
        * 3.支持高并发(多线程)
        * */
        ConcurrentSkipListMap<Long,String> outstandingConfirms = new ConcurrentSkipListMap<>();
        //批量发送消息
        for (int i = 0; i < MESSAGE_COUNT; i++) {
            String message = i + "";
            channel.basicPublish("",queueName,null,message.getBytes());
            //1.此处记录下所有要发送的消息  消息的总和
            outstandingConfirms.put(channel.getNextPublishSeqNo(),message);
        }
        //消息确认成功 回调函数
        ConfirmCallback ackCallback = (deliveryTag,multiple) ->{
            if(multiple) {
                //2.删除掉已经确认的消息 剩下的就是未确认的消息
                ConcurrentNavigableMap<Long, String> confirmed = outstandingConfirms.headMap(deliveryTag);
                confirmed.clear();
            }else{
                outstandingConfirms.remove(deliveryTag);
            }
            System.out.println("确认的消息:" + deliveryTag);
        };
        ConfirmCallback nackCallback = (deliveryTag,multiple) ->{
            String message = outstandingConfirms.get(deliveryTag);
            System.out.println("未确认的消息是:"+message+"::::::::::::::::未确认的消息tag:" + deliveryTag);
        };
5.2.5.三种发布确认速度对比
  • 单独发布消息:同步等待确认,简单,但吞吐量非常有限。
  • 批量发布消息:批量同步等待确认,简单,合理的吞吐量,一旦出现问题但很难推断出是哪条消息出现了问题。
  • 异步处理:最佳性能和资源使用,在出现错误的情况下可以很好地控制,但是实现起来稍微难些。

六、交换机

6.1.Exchanges

6.1.1.Exchanges概念

​ RabbitMQ消息传递模型的核心思想是:生产者生产的消息从不会直接发送到队列。实际上,通常生产者甚至都不知道这些消息传递传递到了哪些队列中。

​ 相反,生产者只能将消息发送到交换机(exchange),交换机工作的内容非常简单,一方面它接收来自生产者的消息,另一方面将它们推入队列。交换机必须确切知道如何处理收到的消息。是应该把这些消息放到特定队列还是说把他们放到许多队列中还是说应该丢弃它们。这就由交换机的类型来决定。

一个队列中的消息只能被消费一次。

交换机可以绑定多个队列,使用交换机将消息绑定给多个队列,可以使消息被多个消费者消费。

image-20220624121048248

image-20220624120549993

6.1.2.Exchanges的类型

总共有一下类型:

直接(direct),主题(topic),标题(headers),扇出(fanout)

6.1.3.无名exchange

默认交换机,通常使用空字符串(“”)进行标识。

image-20220624121344217

第一个参数是交换机的名称。空字符串表示默认或无名称交换机:消息能由路由发送到队列中其实是由routingKey(bindingkey)绑定key指定的,如果它存在的话。

6.2.临时队列

队列的名称对我们来说至关重要-我们需要指定我们的消费者去消费哪个队列的消息。

每当我们连接到Rabbit时,我们都需要一个全新的空队列,为此我们可以创建一个具有随机名称的队列,或者能让服务器为我们选择一个随机队列名称那就更好了。其次一旦我们断开了消费者的链接,队列将自动被删除。

创建临时队列的方式如下:

String querueName = channel.queueDeclare().getQueue();

创建来之后是这样的:

image-20220624122006484

6.3.绑定(bindings)

​ 什么是bingding呢,bingding其实是exchange和queue之间的桥梁,它告诉我们exchange和哪个队列进行了绑定关系。

image-20220624122430387

6.4.Fanout

6.4.1.Fanout介绍

​ Fanout这种类型非常简单。它是将接收到的所有消息广播到它知道的所有队列中。系统中有一个默认的fanout交换机
image-20220624122637478

6.4.2.Fanout实战

image-20220624152553007

Logs 和临时队列的绑定关系如下图:

image-20220624152611583

发送信息给交换机

/*
* 发消息给交换机
* */
public class EmitLog {
    //交换机的名称
    public static final String EXCHANGE_NAME = "logs";

    public static void main(String[] args) throws Exception {
        Channel channel = RabbitMqUtils.getChannel();
        channel.exchangeDeclare(EXCHANGE_NAME,"fanout");
        Scanner scanner = new Scanner(System.in);

        while(scanner.hasNext()){
            String message = scanner.next();
            channel.basicPublish(EXCHANGE_NAME,"",null,message.getBytes("UTF-8"));
            System.out.println("生产者发出消息:"+message);
        }
    }
}

接收交换机广播的信息1

public class ReceiveLogs01 {
    //交换机名称
    public static final String EXCHANGE_NAME = "logs";
    public static void main(String[] args) throws Exception {

        Channel channel = RabbitMqUtils.getChannel();
        //声明一个交换机
        channel.exchangeDeclare(EXCHANGE_NAME,"fanout");
        /*
        * 声明一个队列,临时队列
        * 生成一个临时队列,队列的名称是随机的
        * 当消费者断开与队列的连接的时候,队列就自动删除
        * */
        String queueName = channel.queueDeclare().getQueue();
        /*
        * 绑定交换机与队列
        * */
        channel.queueBind(queueName,EXCHANGE_NAME,"");
        System.out.println("等待接收消息,把接收到的消息打印在屏幕上.......");

        //接收消息
        DeliverCallback deliverCallback = (consumerTag,message) ->{
            System.out.println("ReceiveLogs01控制台打印接收到的消息:" + new String(message.getBody(),"UTF-8"));
        };
        //消费者取消消息时回调接口
        channel.basicConsume(queueName,true,deliverCallback,consumerTag->{});
    }
}

接收交换机广播的信息2

public class ReceiveLogs02 {
    //交换机名称
    public static final String EXCHANGE_NAME = "logs";
    public static void main(String[] args) throws Exception {

        Channel channel = RabbitMqUtils.getChannel();
        //声明一个交换机
        channel.exchangeDeclare(EXCHANGE_NAME,"fanout");
        /*
        * 声明一个队列,临时队列
        * 生成一个临时队列,队列的名称是随机的
        * 当消费者断开与队列的连接的时候,队列就自动删除
        * */
        String queueName = channel.queueDeclare().getQueue();
        /*
        * 绑定交换机与队列
        * */
        channel.queueBind(queueName,EXCHANGE_NAME,"");
        System.out.println("等待接收消息,把接收到的消息打印在屏幕上.......");

        //接收消息
        DeliverCallback deliverCallback = (consumerTag,message) ->{
            System.out.println("ReceiveLogs02控制台打印接收到的消息:" + new String(message.getBody(),"UTF-8"));
        };
        //消费者取消消息时回调接口
        channel.basicConsume(queueName,true,deliverCallback,consumerTag->{});
    }
}

6.5.Direct exchange

Direct exchange这种类型的交换机的工作方式是,消息只去到它绑定的routingKey队列中去。队列只对它绑定的交换机的消息感兴趣。绑定用参数routingKey来表示,也可称该参数为binding key,创建绑定我们用代码:channel.queueBind(queueName,EXCHANGE_NAME,“routingKey”);绑定之后的意义由其交换类型决定。

image-20220624152958233

在上图中,我们可以看到X绑定了两个队列,绑定类型是direct。队列Q1绑定键为orange,队列Q2绑定键有两个:一个绑定键为black,另一个绑定键为green。

6.5.1.多重绑定

image-20220624153224017

当然如果exchange的绑定类型是direct,但是它绑定的队列的key如果都相同,在这种情况下虽然绑定类型是direct但是它表现的就和fanout有点类似了,就跟广播差不多,如上图所示。

6.5.2.实战

image-20220624153452122

image-20220624153526780

发消息给交换机

/*
* 发消息给交换机
* */
public class DirectLogs {
    //交换机的名称
    public static final String EXCHANGE_NAME = "direct_logs";

    public static void main(String[] args) throws Exception {
        Channel channel = RabbitMqUtils.getChannel();
        channel.exchangeDeclare(EXCHANGE_NAME,"direct");
        Scanner scanner = new Scanner(System.in);

        while(scanner.hasNext()){
            String message = scanner.next();
 //通过routinKey来选择发送给哪个队列        
            channel.basicPublish(EXCHANGE_NAME,"error",null,message.getBytes("UTF-8"));
            System.out.println("生产者发出消息:"+message);
        }
    }
}

消费交换机中的消息01

public class ReceiveLogsDirect01 {

    public static final String EXCHANGE_NAME = "direct_logs";


    public static void main(String[] args) throws Exception {

        Channel channel = RabbitMqUtils.getChannel();
        //声明一个交换机
        channel.exchangeDeclare(EXCHANGE_NAME, BuiltinExchangeType.DIRECT);
        /*
         * 声明一个队列,临时队列
         * 生成一个临时队列,队列的名称是随机的
         * 当消费者断开与队列的连接的时候,队列就自动删除
         * */
        channel.queueDeclare("console",false,false,false,null);
        /*
         * 绑定交换机与队列
         * */
        channel.queueBind("console",EXCHANGE_NAME,"info");
        channel.queueBind("console",EXCHANGE_NAME,"warning");
        System.out.println("等待接收消息,把接收到的消息打印在屏幕上.......");

        //接收消息
        DeliverCallback deliverCallback = (consumerTag, message) ->{
            System.out.println("ReceiveDirectLogs01控制台打印接收到的消息:" + new String(message.getBody(),"UTF-8"));
        };
        //消费者取消消息时回调接口
        channel.basicConsume("console",true,deliverCallback,consumerTag->{});
    }
}

消费交换机中的消息02

public class ReceiveLogsDirect02 {

    public static final String EXCHANGE_NAME = "direct_logs";


    public static void main(String[] args) throws Exception {

        Channel channel = RabbitMqUtils.getChannel();
        //声明一个交换机
        channel.exchangeDeclare(EXCHANGE_NAME, BuiltinExchangeType.DIRECT);
        /*
         * 声明一个队列,临时队列
         * 生成一个临时队列,队列的名称是随机的
         * 当消费者断开与队列的连接的时候,队列就自动删除
         * */
        channel.queueDeclare("disk",false,false,false,null);
        /*
         * 绑定交换机与队列
         * */
        channel.queueBind("disk",EXCHANGE_NAME,"error");
        System.out.println("等待接收消息,把接收到的消息打印在屏幕上.......");

        //接收消息
        DeliverCallback deliverCallback = (consumerTag, message) ->{
            System.out.println("ReceiveLogsDirect02控制台打印接收到的消息:" + new String(message.getBody(),"UTF-8"));
        };
        //消费者取消消息时回调接口
        channel.basicConsume("disk",true,deliverCallback,consumerTag->{});
    }
}

6.6.Topics

使用fanout交换机以广播的形式发送消息给队列,而direct交换机能实现有选择性地接收日志。但是direct交换机仍然存在局限性-比方说我们想接收的日志类型有info.base和info.adbantage,某个队列只想info.base的消息,那这个时候direct就办不到了。这个时候就只能使用topic类型。

一个交换机只能发送给一个routinKey队列,可以捆绑多个队列。

如果两个队列的routinKey不一样,那direct交换机就不能实现将信息发送给两个队列。这时就需要使用Topic交换机。

6.6.1.Topic的要求

发送到类型是 topic 交换机的消息的 routing_key 不能随意写,必须满足一定的要求,它必须是一个单词列表,以点号分隔开。这些单词可以是任意单词。比如说:”stock.usd.nyse”, “nyse.vmw”, “quick.orange.rabbit”. 这种类型的。当然这个单词列表最多不能超过 255 个字节。

在这个规则列表中,其中有两个替换符是大家需要注意的:

***(星号) 可以代替一个单词 **
#(井号) 可以替代零个或多个单词

6.6.2.Topic匹配案例

下图绑定关系如下
image-20220624160712440

Q1–> 绑定的是:

中间带 orange 带 3 个单词的字符串 (.orange.)
Q2–> 绑定的是:

最后一个单词是 rabbit 的 3 个单词 (..rabbit)
第一个单词是 lazy 的多个单词 (lazy.#)
上图是一个队列绑定关系图,我们来看看他们之间数据接收情况是怎么样的:

image-20220624160946814

注意:

当一个队列绑定键是 #,那么这个队列将接收所有数据,就有点像 fanout 了
如果队列绑定键当中没有 #和 * 出现,那么该队列绑定类型就是 direct 了

6.6.3.Topic实战

image-20220624161412474

消费者1

public class ReceiveLogsTopic01 {

    //交换机的名称
    public static final String EXCHANGE_NAME = "topic_logs";

    //接收消息
    public static void main(String[] args) throws Exception {
        Channel channel = RabbitMqUtils.getChannel();
        channel.exchangeDeclare(EXCHANGE_NAME,"topic");
        String queueName = "Q1";
        channel.queueDeclare(queueName,false,false,false,null);
        channel.queueBind(queueName,EXCHANGE_NAME,"*.orange.*");
        System.out.println("等待接收消息");
        DeliverCallback deliverCallback = (consumerTag,message) ->{
            System.out.println(new String(message.getBody(),"UTF-8"));
            System.out.println("接收队列:" + queueName + " 绑定键: " + message.getEnvelope().getRoutingKey());
        };
        channel.basicConsume(queueName,true,deliverCallback,consumerTag->{});
    }

}

消费者2

public class ReceiveLogsTopic02 {

    //交换机的名称
    public static final String EXCHANGE_NAME = "topic_logs";

    //接收消息
    public static void main(String[] args) throws Exception {
        Channel channel = RabbitMqUtils.getChannel();
        channel.exchangeDeclare(EXCHANGE_NAME,"topic");
        String queueName = "Q2";
        channel.queueDeclare(queueName,false,false,false,null);
        channel.queueBind(queueName,EXCHANGE_NAME,"*.*.rabbit");
        channel.queueBind(queueName,EXCHANGE_NAME,"lazy.#");
        System.out.println("等待接收消息");
        DeliverCallback deliverCallback = (consumerTag,message) ->{
            System.out.println(new String(message.getBody(),"UTF-8"));
            System.out.println("接收队列:" + queueName + " 绑定键: " + message.getEnvelope().getRoutingKey());
        };
        channel.basicConsume(queueName,true,deliverCallback,consumerTag->{});
    }

}

生产者

public class EmitLogTopic {
    private static final String EXCHANGE_NAME = "topic_logs";

    public static void main(String[] args) throws Exception {
        Channel channel = RabbitMqUtils.getChannel();
        channel.exchangeDeclare(EXCHANGE_NAME, BuiltinExchangeType.TOPIC);

        /**
         * Q1-->绑定的是
         *      中间带 orange 带 3 个单词的字符串(*.orange.*)
         * Q2-->绑定的是
         *      最后一个单词是 rabbit 的 3 个单词(*.*.rabbit)
         *      第一个单词是 lazy 的多个单词(lazy.#)
         *
         */
        Map<String, String> bindingKeyMap = new HashMap<>();
        bindingKeyMap.put("quick.orange.rabbit", "被队列 Q1Q2 接收到");
        bindingKeyMap.put("lazy.orange.elephant", "被队列 Q1Q2 接收到");
        bindingKeyMap.put("quick.orange.fox", "被队列 Q1 接收到");
        bindingKeyMap.put("lazy.brown.fox", "被队列 Q2 接收到");
        bindingKeyMap.put("lazy.pink.rabbit", "虽然满足两个绑定但只被队列 Q2 接收一次");
        bindingKeyMap.put("quick.brown.fox", "不匹配任何绑定不会被任何队列接收到会被丢弃");
        bindingKeyMap.put("quick.orange.male.rabbit", "是四个单词不匹配任何绑定会被丢弃");
        bindingKeyMap.put("lazy.orange.male.rabbit", "是四个单词但匹配 Q2");
        for (Map.Entry<String, String> bindingKeyEntry : bindingKeyMap.entrySet()) {
            String bindingKey = bindingKeyEntry.getKey();
            String message = bindingKeyEntry.getValue();

            channel.basicPublish(EXCHANGE_NAME, bindingKey, null, message.getBytes("UTF-8"));
            System.out.println("生产者发出消息:" + message);
        }
    }
}

七、死信队列

7.1.死信的概念

​ 死信,顾名思义就是无法被消费的消息,一般来说,producer将消息投递到broker或者直接到queue里了,consumer从queue取出消息进行消费,但某些时候由于特定的原因导致queue中的某些消息无法被消费,这样的消息如果没有后续的处理,就变成了死信,有死信自然就有了死信队列。

​ 应用场景:为了保证订单业务的消息数据不丢失,需要使用到RabbitMQ的死信队列机制,当消息消费发生异常时,将消息投入到死信队列中。

7.2.死信的来源

消息TTL过期。

队列达到最大长度(队列满了,无法再添加数据到mq中)

消息被拒绝(basic.reject或basic.nack)并且requeue=false。

7.3.死信实战

image-20220625142818273

7.3.1.消息TTL过期

消费者01

public class Consumer01 {

    public static final String NORMAL_EXCHANGE = "normal_exchange";
    public static final String DEAD_EXCHANGE = "dead_exchange";

    public static final String NORMAL_QUEUE = "normal_queue";
    public static final String DEAD_QUEUE = "dead_queue";

    public static void main(String[] args) throws Exception {
        Channel channel = RabbitMqUtils.getChannel();
        channel.exchangeDeclare(NORMAL_EXCHANGE, BuiltinExchangeType.DIRECT);
        channel.exchangeDeclare(DEAD_EXCHANGE,BuiltinExchangeType.DIRECT);
        //声明队列
        Map<String,Object> arguments = new HashMap<>();
        //过期时间
        //正常队列设置死信交换机
        arguments.put("x-dead-letter-exchange",DEAD_EXCHANGE);
        //设置死信RoutingKey
        arguments.put("x-dead-letter-routing-key","lisi");
        channel.queueDeclare(NORMAL_QUEUE,false,false,false,arguments);
        channel.queueDeclare(DEAD_QUEUE,false,false,false,null);

        channel.queueBind(NORMAL_QUEUE,NORMAL_EXCHANGE,"zhangsan");
        channel.queueBind(DEAD_QUEUE,DEAD_EXCHANGE,"lisi");

        System.out.println("等待接收消息.....");

        DeliverCallback deliverCallback = (consumerTag,message)->{
            System.out.println("Consumer01接收的消息是:"+new String(message.getBody(),"UTF-8"));
        };
        channel.basicConsume(NORMAL_QUEUE,true,deliverCallback,consumerTag->{});
    }
}

消费者02

public class Consumer02 {

    public static final String DEAD_QUEUE = "dead_queue";

    public static void main(String[] args) throws Exception {
        Channel channel = RabbitMqUtils.getChannel();

        System.out.println("等待接收消息.....");

        DeliverCallback deliverCallback = (consumerTag, message)->{
            System.out.println("Consumer02接收的消息是:"+new String(message.getBody(),"UTF-8"));
        };
        channel.basicConsume(DEAD_QUEUE,true,deliverCallback,consumerTag->{});
    }
}

生产者

public class Producer {

    public static final String NORMAL_EXCHANGE = "normal_exchange";
    public static final String NORMAL_QUEUE = "normal_queue";

    public static void main(String[] args) throws Exception {
        Channel channel = RabbitMqUtils.getChannel();
        AMQP.BasicProperties properties = new AMQP.BasicProperties().builder().expiration("10000").build();
        for (int i = 1; i < 11; i++) {
            String message = "info" + i;
            channel.basicPublish(NORMAL_EXCHANGE,"zhangsan",properties,message.getBytes());
        }
    }

}
7.3.2.队列达到最大长度

消息生产者代码去掉 TTL 属性:

image-20220625161515040

C1 消费者修改以下代码 (启动之后关闭该消费者 模拟其接收不到消息):

image-20220625161710549

        //设置正常队列的长度的限制
        arguments.put("x-max-length",6);

注意此时需要把原先队列删除,因为参数改变了。

C2 消费者代码不变 (启动 C2 消费者)

image-20220625161847599

7.3.3.消息被拒

消息生产者代码同上生产者一致

C1 消费者代码 (启动之后关闭该消费者 模拟其接收不到消息)

public class Consumer01 {

    public static final String NORMAL_EXCHANGE = "normal_exchange";
    public static final String DEAD_EXCHANGE = "dead_exchange";

    public static final String NORMAL_QUEUE = "normal_queue";
    public static final String DEAD_QUEUE = "dead_queue";

    public static void main(String[] args) throws Exception {
        Channel channel = RabbitMqUtils.getChannel();
        channel.exchangeDeclare(NORMAL_EXCHANGE, BuiltinExchangeType.DIRECT);
        channel.exchangeDeclare(DEAD_EXCHANGE,BuiltinExchangeType.DIRECT);
        //声明队列
        Map<String,Object> arguments = new HashMap<>();
        //过期时间
        //正常队列设置死信交换机
        arguments.put("x-dead-letter-exchange",DEAD_EXCHANGE);
        //设置死信RoutingKey
        arguments.put("x-dead-letter-routing-key","lisi");

        //设置正常队列的长度的限制
//        arguments.put("x-max-length",6);

        channel.queueDeclare(NORMAL_QUEUE,false,false,false,arguments);
        channel.queueDeclare(DEAD_QUEUE,false,false,false,null);

        channel.queueBind(NORMAL_QUEUE,NORMAL_EXCHANGE,"zhangsan");
        channel.queueBind(DEAD_QUEUE,DEAD_EXCHANGE,"lisi");

        System.out.println("等待接收消息.....");

        DeliverCallback deliverCallback = (consumerTag,message)->{
            String msg = new String(message.getBody(),"UTF-8");
            if(msg.equals("info5")){
                System.out.println("Consumer01接收的消息是:" + msg + ":此消息是被C1拒绝的");
                channel.basicReject(message.getEnvelope().getDeliveryTag(),false);
            }else{
                System.out.println("Consumer01接收的消息是:" + msg);
            }



            System.out.println("Consumer01接收的消息是:"+ message);
        };

        //开启手动应答
        channel.basicConsume(NORMAL_QUEUE,false,deliverCallback,consumerTag->{});
    }
}

image-20220625163523065

C2 消费者代码不变:启动消费者 1 然后再启动消费者 2

image-20220625163647148

image-20220625163628086

八、延迟队列

8.1.延迟队列概念

延时队列,队列内部是有序的,最重要的特性就体现在它的延时属性上,延时队列中的元素是希望在指定时间到了以后或之前取出和处理,简单来说,延时队列就是用来存放需要在指定时间被处理的元素的队列。

8.2.延迟队列使用场景

1.订单在十分钟之内未支付则自动取消。

2.新创建的店铺,如果在十天内都没有上传过商品,则自动发送消息提醒。

3.用户注册成功后,如果三天内没有登录则进行短信提醒。

4.用户发起退款,如果三天内没有得到处理则通知相关运营人员。

5.预定会议后,需要在预定的时间点前10分钟通知各个与会人员参加会议。

这些场景都有一个特点,需要在某个事件发生之后或者之前的指定时间点完成某一项任务,如:发生订单生成事件,在十分钟之后检查该订单支付状态,然后将未支付的订单进行关闭。那我们一直轮询数据,每秒查一次,取出需要被处理的数据,然后处理不就完事了吗?

如果数据量比较少,确实可以这样做,比如:对于 “如果账单一周内未支付则进行自动结算” 这样的需求, 如果对于时间不是严格限制,而是宽松意义上的一周,那么每天晚上跑个定时任务检查一下所有未支付的账单,确实也是一个可行的方案。

但对于数据量比较大,并且时效性较强的场景,如:“订单十分钟内未支付则关闭 “,短期内未支付的订单数据可能会有很多,活动期间甚至会达到百万甚至千万级别,对这么庞大的数据量仍旧使用轮询的方式显然是不可取的,很可能在一秒内无法完成所有订单的检查,同时会给数据库带来很大压力,无法满足业务要求而且性能低下。

image-20220625164516834

8.3.整合Springboot

  1. 创建SpringBoot项目

在这里插入图片描述

  1. 添加依赖

        <dependencies>
                <dependency>
                    <groupId>org.springframework.boot</groupId>
                    <artifactId>spring-boot-starter</artifactId>
                </dependency>
                <!--RabbitMQ 依赖-->
                <dependency>
                    <groupId>org.springframework.boot</groupId>
                    <artifactId>spring-boot-starter-amqp</artifactId>
                </dependency>
                <dependency>
                    <groupId>org.springframework.boot</groupId>
                    <artifactId>spring-boot-starter-web</artifactId>
                </dependency>
                <dependency>
                    <groupId>org.springframework.boot</groupId>
                    <artifactId>spring-boot-starter-test</artifactId>
                    <scope>test</scope>
                </dependency>
                <dependency>
                    <groupId>com.alibaba</groupId>
                    <artifactId>fastjson</artifactId>
                    <version>1.2.47</version>
                </dependency>
                <dependency>
                    <groupId>org.projectlombok</groupId>
                    <artifactId>lombok</artifactId>
                </dependency>
                <!--swagger-->
                <dependency>
                    <groupId>io.springfox</groupId>
                    <artifactId>springfox-swagger2</artifactId>
                    <version>3.0.0</version>
                </dependency>
                <dependency>
                    <groupId>io.springfox</groupId>
                    <artifactId>springfox-swagger-ui</artifactId>
                    <version>3.0.0</version>
                </dependency>
                <!--RabbitMQ 测试依赖-->
                <dependency>
                    <groupId>org.springframework.amqp</groupId>
                    <artifactId>spring-rabbit-test</artifactId>
                    <scope>test</scope>
                </dependency>
        </dependencies>
    
  2. 修改配置文件

    spring.rabbitmq.host=192.168.200.131
    spring.rabbitmq.port=5672
    spring.rabbitmq.username=admin
    spring.rabbitmq.password=123
    
  3. 添加Swagger配置类

@Configuration
@EnableSwagger2
public class SwaggerConfig {

    @Bean
    public Docket webApiConfig() {
        return new Docket(DocumentationType.SWAGGER_2)
                .groupName("webApi")
                .apiInfo(webApiInfo())
                .select()
                .build();
    }

    private ApiInfo webApiInfo() {
        return new ApiInfoBuilder()
                .title("rabbitmq 接口文档")
                .description("本文档描述了 rabbitmq 微服务接口定义")
                .version("1.0")
                .contact(new Contact("zhangsan", "http://oddfar.com", "test@qq.com"))
                .build();
    }

}

8.4.RabbitMQ中的TTL

TTL 是 RabbitMQ 中一个消息或者队列的属性,表明一条消息或者该队列中的所有消息的最大存活时间,单位是毫秒。

换句话说,如果一条消息设置了 TTL 属性或者进入了设置 TTL 属性的队列,那么这条消息如果在 TTL 设置的时间内没有被消费,则会成为” 死信”。如果同时配置了队列的 TTL 和消息的 TTL,那么较小的那个值将会被使用,有两种方式设置 TTL。

队列设置 TTL:在创建队列的时候设置队列的 “x-message-ttl” 属性

image-20220625170744727

消息设置 TTL:是针对每条消息设置 TTL

image-20220625170756629

两者的区别

如果设置了队列的 TTL 属性,那么一旦消息过期,就会被队列丢弃 (如果配置了死信队列被丢到死信队列中),而第二种方式,消息即使过期,也不一定会被马上丢弃,因为消息是否过期是在即将投递到消费者之前判定的,如果当前队列有严重的消息积压情况,则已过期的消息也许还能存活较长时间。

另外,还需要注意的一点是,如果不设置 TTL,表示消息永远不会过期,如果将 TTL 设置为 0,则表示除非此时可以直接投递该消息到消费者,否则该消息将会被丢弃。

8.5.队列TTL

8.5.1.代码架构图

创建两个队列 QA 和 QB,两者队列 TTL 分别设置为 10S 和 40S,然后在创建一个交换机 X 和死信交换机 Y,它们的类型都是 direct,创建一个死信队列 QD,它们的绑定关系如下:

image-20220625173541308

8.5.2.配置文件类代码
@Configuration
public class TtlQueueConfig {

    public static final String X_EXCHANGE = "X";

    public static final String QUEUE_A = "QA";

    public static final String QUEUE_B = "QB";

    //死信交换机
    public static final String Y_DEAD_LETTER_EXCHANGE = "Y";

    //死信队列
    public static final String DEAD_LETTER_QUEUE = "QD";

    //声明 xExchange
    @Bean("xExchange")
    public DirectExchange xExchange(){
        return new DirectExchange(X_EXCHANGE);
    }

    //声明 死信队列交换机
    @Bean("yExchange")
    public DirectExchange yExchange(){
        return new DirectExchange(Y_DEAD_LETTER_EXCHANGE);
    }

    //声明队列A ttl 为10s 并绑定到对应的死信交换机
    @Bean("queueA")
    public Queue queueA(){

        Map<String,Object> args = new HashMap<>(3);
        //声明当前队列绑定的死信交换机
        args.put("x-dead-letter-exchange",Y_DEAD_LETTER_EXCHANGE);
        //声明当前队列的死信路由key
        args.put("x-dead-letter-routing-key","YD");
        //声明队列的TTL
        args.put("x-message-ttl",10000);

        return QueueBuilder.durable(QUEUE_A).withArguments(args).build();
    }
    //声明队列A ttl 为10s 并绑定到对应的死信交换机
    @Bean("queueB")
    public Queue queueB(){

        Map<String,Object> args = new HashMap<>(3);
        //声明当前队列绑定的死信交换机
        args.put("x-dead-letter-exchange",Y_DEAD_LETTER_EXCHANGE);
        //声明当前队列的死信路由key
        args.put("x-dead-letter-routing-key","YD");
        //声明队列的TTL
        args.put("x-message-ttl",40000);

        return QueueBuilder.durable(QUEUE_B).withArguments(args).build();
    }

    @Bean("queueD")
    public Queue queueD(){
        return  QueueBuilder.durable(DEAD_LETTER_QUEUE).build();
    }

    //绑定
    @Bean
    public Binding queueABindingX(@Qualifier("queueA") Queue queueA,
                                  @Qualifier("xExchange") DirectExchange xExchange){
        return BindingBuilder.bind(queueA).to(xExchange).with("XA");
    }
    //绑定
    @Bean
    public Binding queueBBindingX(@Qualifier("queueB") Queue queueB,
                                  @Qualifier("xExchange") DirectExchange xExchange){
        return BindingBuilder.bind(queueB).to(xExchange).with("XB");
    }

    //绑定
    @Bean
    public Binding queueDBindingY(@Qualifier("queueD") Queue queueD,
                                  @Qualifier("yExchange") DirectExchange yExchange){
        return BindingBuilder.bind(queueD).to(yExchange).with("YD");
    }

}

8.5.3.消息生产者代码
@Slf4j
@RestController
@RequestMapping("ttl")
public class SendMsgController {

    @Autowired
    private RabbitTemplate rabbitTemplate;
    //开始发消息
    @GetMapping("/sendMsg/{message}")
    public void sendMsg(@PathVariable String message){
//        System.out.println("当前时间:" + new Date().toString() + ",发送一条信息给两个TTL队列:" + message);
        log.info("当前时间:{},发送一条信息给两个TTL队列:{}",new Date().toString(),message);
        rabbitTemplate.convertAndSend("X","XA","ttl为10s的队列的消息");
        rabbitTemplate.convertAndSend("X","XB","ttl为40s的队列的消息");
    }
}
8.5.4.消息消费者代码
@Slf4j
@Component
public class DeadLetterQueueConsumer {

    //接收消息
    @RabbitListener(queues = "QD")
    public void receiveD(Message message, Channel channel) throws Exception{
        String msg = new String(message.getBody());
        log.info("当前时间:{},死信队列收到的消息:{}",new Date().toString(),msg);
    }
}

发起一个请求 http://localhost:8080/ttl/sendMsg/ 嘻嘻嘻

image-20220625182937143

第一条消息在 10S 后变成了死信消息,然后被消费者消费掉,第二条消息在 40S 之后变成了死信消息, 然后被消费掉,这样一个延时队列就打造完成了。

不过,如果这样使用的话,岂不是每增加一个新的时间需求,就要新增一个队列,这里只有 10S 和 40S 两个时间选项,如果需要一个小时后处理,那么就需要增加 TTL 为一个小时的队列,如果是预定会议室然后提前通知这样的场景,岂不是要增加无数个队列才能满足需求?

8.6.延迟队列优化

8.6.1.代码架构图

在这里新增了一个队列 QC,绑定关系如下,该队列不设置 TTL 时间

image-20220626153853583

8.6.2.配置文件类代码

在配置文件类中添加

image-20220626154011216

 //死信队列
    public static final String DEAD_LETTER_QUEUE = "QD";

    //普通队列
    public static final String QUEUE_C = "QC";

    @Bean("queueC")
    public Queue queueC(){
        Map<String,Object> arguments = new HashMap<>(3);
        //设置死信交换机
        arguments.put("x-dead-letter-exchange",Y_DEAD_LETTER_EXCHANGE);
        //设置死信RoutingKey
        arguments.put("x-dead-letter-routing-key","YD");
        //TTL
        return QueueBuilder.durable(QUEUE_C).withArguments(arguments).build();
    }

    @Bean
    public Binding queueCBindingX(@Qualifier("queueC") Queue queueC,
                                  @Qualifier("xExchange")DirectExchange xExchange){
        return BindingBuilder.bind(queueC).to(xExchange).with("XC");
    }
8.6.3.消息生产者代码
    //开始发消息 消息 TTL
    @GetMapping("/sendExpirationMsg/{message}/{ttlTime}")
    public void sendMsg(@PathVariable String message,@PathVariable String ttlTime){
        log.info("当前时间:{},发送一条时长{}毫秒TTL信息给队列QC:{}",new Date().toString(),ttlTime,message);
        rabbitTemplate.convertAndSend("X","XC",message,msg ->{
            //发送消息的时候,延迟时长
            msg.getMessageProperties().setExpiration(ttlTime);
            return msg;
        } );
    }

http://localhost:8080/ttl/sendExpirationMsg/你好1/20000

http://localhost:8080/ttl/sendExpirationMsg/你好2/2000

看起来似乎没什么问题,但是在最开始的时候,就介绍过如果使用在消息属性上设置 TTL 的方式,消息可能并不会按时 “死亡 “。

因为 RabbitMQ 只会检查第一个消息是否过期,如果过期则丢到死信队列, 如果第一个消息的延时时长很长,而第二个消息的延时时长很短,第二个消息并不会优先得到执行。这也就是为什么第二个延时 2 秒,却后执行。

此外,我们还可以通过 Rabbitmq 插件实现延迟队列。

image-20220626154825392

8.7.Rabbitmq插件实现延迟队列

如果不能实现再消息粒度上的TTL,并使其在设置的TTL时间及时死亡,就无法设计成一个通用的延时队列。

8.7.1.安装延时队列插件

官网https://www.rabbitmq.com/community-plugins.html下载

rabbitmq_delayed_message_exchange插件,然后将安装包拷贝至指定路径。

cp rabbitmq_delayed_message_exchange-3.8.0.ez  /usr/lib/rabbitmq/lib/rabbitmq_server-3.7.18/plugins

在/usr/lib/rabbitmq/lib/rabbitmq_server-3.7.18/plugins目录下执行下列命令安装

rabbitmq-plugins enable rabbitmq_delayed_message_exchange

image-20220626161525062

重启rabbitmq

systemctl restart rabbitmq-server

基于死信的延时队列
image-20220626161841353

基于插件的延时队列

image-20220626161928367

8.7.2.代码架构图

在这里新增了一个队列delayed.queue,一个自定义交换机,delayed.exchange,绑定关系如下:

image-20220626162013937

8.7.3.配置文件类代码

在我们自定义的交换机中,这是一种新的交换类型,该类型消息支持延迟投递机制,消息传递后并不会立即投递到目标队列中,而是存储在mnesia(一个分布式数据系统)表中,当达到投递时间时,才投递到目标队列中。

@Configuration
public class DelayedQueueConfig {
    //队列
    public static final String DELAYED_QUEUE_NAME = "delayed.queue";

    //交换机
    public static final String DELAYED_EXCHANGE_NAME = "delayed.exchange";

    //routingKey
    public static final String DELAYED_ROUTING_KEY = "delayed.routingkey";

    @Bean
    public Queue delayedQueue(){
        return new Queue(DELAYED_QUEUE_NAME);
    }

    //声明交换机,基于插件的
    @Bean
    public CustomExchange delayedExchange(){

        Map<String,Object> arguments = new HashMap<>();
        arguments.put("x-delayed-type","direct");
        /*
        * 1.交换机的名称
        * 2.交换机的类型
        * 3.是否需要持久化
        * 4.是否需要自动删除
        * 5.其他的参数
        * */
        return new CustomExchange(DELAYED_EXCHANGE_NAME,"x-delayed-message",true,false,arguments);
    }

    //绑定
    @Bean
    public Binding delayedQueueBindingDelayedExchange(
            @Qualifier("delayedQueue") Queue delayedQueue,
            @Qualifier("delayedExchange") CustomExchange delayedExchange
    ){
        return BindingBuilder.bind(delayedQueue).to(delayedExchange).with(DELAYED_ROUTING_KEY).noargs();
    }
}
8.7.4.消息生产者代码
    //开始发消息 基于插件的 消息 及 延迟的时间
    @GetMapping("/sendDelayMsg/{message}/{delayTime}")
    public void sendMsg(@PathVariable String message, @PathVariable Integer delayTime){
        log.info("当前时间:{},发送一条时长{}毫秒信息给延迟队列delayed.queue:{}",new Date().toString(),delayTime,message);
        rabbitTemplate.convertAndSend(DelayedQueueConfig.DELAYED_EXCHANGE_NAME,DelayedQueueConfig.DELAYED_ROUTING_KEY,message, msg ->{
            //发送消息的时候,延迟时长 单位:ms
            msg.getMessageProperties().setDelay(delayTime);
            return msg;
        } );
    }
8.7.5.消息消费者代码
@Slf4j
@Component
public class DeadLetterQueueConsumer {

    //接收消息
    @RabbitListener(queues = "QD")
    public void receiveD(Message message, Channel channel) throws Exception{
        String msg = new String(message.getBody());
        log.info("当前时间:{},死信队列收到的消息:{}",new Date().toString(),msg);
    }
}

发送两条消息

http://localhost:8080/ttl/sendDelayMsg/come on baby1/20000

http://localhost:8080/ttl/sendDelayMsg/come on baby2/2000

image-20220626173909279

第二个消息被先消费掉了,符合预期。

8.8.总结

延时队列在需要延时处理的场景下非常有用,使用 RabbitMQ 来实现延时队列可以很好的利用 RabbitMQ 的特性,如:消息可靠发送、消息可靠投递、死信队列来保障消息至少被消费一次以及未被正确处理的消息不会被丢弃。另外,通过 RabbitMQ 集群的特性,可以很好的解决单点故障问题,不会因为单个节点挂掉导致延时队列不可用或者消息丢失。

当然,延时队列还有很多其它选择,比如利用 Java 的 DelayQueue,利用 Redis 的 zset,利用 Quartz 或者利用 kafka 的时间轮,这些方式各有特点,看需要适用的场景。

九、发布确认高级

在生产环境中由于一些不明原因,导致rabbitmq重启,在RabbitMQ重启期间生产者消息投递失败,导致消息丢失,需要手动处理和恢复。那么如何才能进行RabbitMQ的消息可靠投递呢?特别是在比较极端的情况下,RabbitMQ集群不可用的时候,无法投递的消息该如何处理呢?

9.1.发布确认 springboot版本

9.1.1.确认机制方案

image-20220626175453653

9.1.2.代码架构图

image-20220626175528924

在配置文件当中需要添加

PROPERTIES

spring.rabbitmq.publisher-confirm-type=correlated

NONE 值是禁用发布确认模式,是默认值。

CORRELATED 值是发布消息成功到交换器后会触发回调方法。

SIMPLE 值经测试有两种效果,其一效果和 CORRELATED 值一样会触发回调方法,其二在发布消息成功后使用 rabbitTemplate 调用 waitForConfirms 或 waitForConfirmsOrDie 方法等待 broker 节点返回发送结果,根据返回结果来判定下一步的逻辑,要注意的点是 waitForConfirmsOrDie 方法如果返回 false 则会关闭 channel,则接下来无法发送消息到 broker。

9.1.3.配置类代码
@Configuration
public class ConfirmConfig {

    //交换机
    public static final String CONFIRM_EXCHANGE_NAME = "confirm_exchange";

    //队列
    public static final String CONFIRM_QUEUE_NAME = "confirm_queue";

    //RoutingKey
    public static final String CONFIRM_ROUTING_KEY = "key1";

    //声明交换机
    @Bean("confirmExchange")
    public DirectExchange confirmExchange(){
        return new DirectExchange(CONFIRM_EXCHANGE_NAME);
    }
    @Bean("confirmQueue")
    public Queue confirmQueue(){
        return QueueBuilder.durable(CONFIRM_EXCHANGE_NAME).build();
    }
    //绑定
    @Bean
    public Binding queueBindingExchange(@Qualifier("confirmQueue") Queue confirmQueue,
                                        @Qualifier("confirmExchange") DirectExchange confirmExchange){
        return BindingBuilder.bind(confirmQueue).to(confirmExchange).with(CONFIRM_ROUTING_KEY);
    }
}

9.1.4.消息生产者
@Slf4j
@RestController
@RequestMapping("/confirm")
public class ProducerController {

    @Autowired
    private RabbitTemplate rabbitTemplate;

    //发消息
    @GetMapping("/sendMessage/{message}")
    public void sendMessage(@PathVariable String message){
        CorrelationData correlationData = new CorrelationData("1");
        rabbitTemplate.convertAndSend(ConfirmConfig.CONFIRM_EXCHANGE_NAME,ConfirmConfig.CONFIRM_ROUTING_KEY,message,correlationData);
        log.info("发送消息内容:{}",message);
    }

}
9.1.5.回调接口
@Slf4j
@Component
public class MyCallBack implements RabbitTemplate.ConfirmCallback {

    @Autowired
    private RabbitTemplate rabbitTemplate;

    @PostConstruct
    public void init(){
        //注入
        rabbitTemplate.setConfirmCallback(this);
    }

    /*
    * 交换机确认回调方法
    * 1.发消息 交换机接收到了  回调
    *   1.1 correlationData 保存回调消息的ID及相关信息
    *   1.2 交换机收到消息 ack = true
    *   1.3 cause null
    * 2.发消息 交换机接收失败了 回调
    *   2.1 correlationData 保存回调消息的ID及相关信息
    *   2.2 交换机收到消息 ack =false
    *   2.3 cause 失败的原因
    * */

    @Override
    public void confirm(CorrelationData correlationData, boolean ack, String cause) {

        String id = correlationData != null ? correlationData.getId() : "";

        if(ack){
            log.info("交换机已经收到Id为:{}的消息",id);
        }else{
            log.info("交换机还未收到Id为:{}的消息,由于原因:{}",id,cause);
        }
    }
}

9.1.6.消息消费者
@Component
@Slf4j
public class Consumer {

    @RabbitListener(queues = ConfirmConfig.CONFIRM_QUEUE_NAME)
    public void receiveConfirmMessage(Message message){
        String msg = new String(message.getBody());
        log.info("接受到的队列confirm.queue消息:{}",msg);
    }
}
9.1.7.结果分析

image-20220627100941334

image-20220627100903757

可以看到,发送了两条消息,第一条消息的 RoutingKey 为 “key1”,第二条消息的 RoutingKey 为 “key2”,两条消息都成功被交换机接收,也收到了交换机的确认回调,但消费者只收到了一条消息,因为第二条消息的 RoutingKey 与队列的 BindingKey 不一致,也没有其它队列能接收这个消息,所有第二条消息被直接丢弃了。丢弃的消息交换机是不知道的,需要解决告诉生产者消息传送失败。

9.2.回退消息

9.2.1.Mandatory参数

​ 在仅开启了生产者确认机制的情况下,交换机接收到消息后,会直接给消息生产者发送确认消息,如果发现该消息不可路由,那么消息会被直接丢弃,此时生产者是不知道消息被丢弃这个事件的。那么如何让无法被路由的消息帮我想办法处理一下呢?最起码通知我一声,我好自己处理啊。通过设置mandatory参数可以在当消息传递过程中不可达目的地时将消息返回给生产者。

9.2.2.消息生产者代码
@Slf4j
@RestController
@RequestMapping("/confirm")
public class ProducerController {

    @Autowired
    private RabbitTemplate rabbitTemplate;

    //发消息
    @GetMapping("/sendMessage/{message}")
    public void sendMessage(@PathVariable String message){
        CorrelationData correlationData1 = new CorrelationData("1");
        rabbitTemplate.convertAndSend(ConfirmConfig.CONFIRM_EXCHANGE_NAME,ConfirmConfig.CONFIRM_ROUTING_KEY,message+"key1",correlationData1);
        log.info("发送消息内容:{}",message+"key1");

        CorrelationData correlationData2 = new CorrelationData("2");
        rabbitTemplate.convertAndSend(ConfirmConfig.CONFIRM_EXCHANGE_NAME,ConfirmConfig.CONFIRM_ROUTING_KEY+"2",message+"key2",
                correlationData2);
        log.info("发送消息内容:{}",message+"key12");
    }


}

9.2.3.回调接口
@Slf4j
@Component
public class MyCallBack implements RabbitTemplate.ConfirmCallback,RabbitTemplate.ReturnCallback {

    @Autowired
    private RabbitTemplate rabbitTemplate;

    @PostConstruct
    public void init(){
        //注入
        rabbitTemplate.setConfirmCallback(this);
        rabbitTemplate.setReturnCallback(this);
    }

    /*
    * 交换机确认回调方法
    * 1.发消息 交换机接收到了  回调
    *   1.1 correlationData 保存回调消息的ID及相关信息
    *   1.2 交换机收到消息 ack = true
    *   1.3 cause null
    * 2.发消息 交换机接收失败了 回调
    *   2.1 correlationData 保存回调消息的ID及相关信息
    *   2.2 交换机收到消息 ack =false
    *   2.3 cause 失败的原因
    * */

    @Override
    public void confirm(CorrelationData correlationData, boolean ack, String cause) {

        String id = correlationData != null ? correlationData.getId() : "";

        if(ack){
            log.info("交换机已经收到Id为:{}的消息",id);
        }else{
            log.info("交换机还未收到Id为:{}的消息,由于原因:{}",id,cause);
        }
    }


    //可以在当消息传递过程中不可达目的地时将消息返回给生产者
    //只有不可达目的地的时候 才进行回退
    @Override
    public void returnedMessage(Message message, int replyCode, String replyText, String exchange, String routingKey) {
        log.error("消息{},被交换机{}退回,退回原因:{},路由Key:{}",new String(message.getBody()),exchange,replyText,routingKey);
    }
}

9.2.4.结果分析

image-20220627103002632

9.3.备份交换机

有了 mandatory 参数和回退消息,我们获得了对无法投递消息的感知能力,在生产者的消息无法被投递时发现并处理。但有时候,我们并不知道该如何处理这些无法路由的消息,最多打个日志,然后触发报警,再来手动处理。而通过日志来处理这些无法路由的消息是很不优雅的做法,特别是当生产者所在的服务有多台机器的时候,手动复制日志会更加麻烦而且容易出错。而且设置 mandatory 参数会增加生产者的复杂性,需要添加处理这些被退回的消息的逻辑。如果既不想丢失消息,又不想增加生产者的复杂性,该怎么做呢?

前面在设置死信队列的文章中,我们提到,可以为队列设置死信交换机来存储那些处理失败的消息,可是这些不可路由消息根本没有机会进入到队列,因此无法使用死信队列来保存消息。 在 RabbitMQ 中,有一种备份交换机的机制存在,可以很好的应对这个问题。

备份交换机可以理解为 RabbitMQ 中交换机的 “备胎”,当我们为某一个交换机声明一个对应的备份交换机时,就是为它创建一个备胎,当交换机接收到一条不可路由消息时,将会把这条消息转发到备份交换机中,由备份交换机来进行转发和处理,通常备份交换机的类型为 Fanout ,这样就能把所有消息都投递到与其绑定的队列中,然后我们在备份交换机下绑定一个队列,这样所有那些原交换机无法被路由的消息,就会都进入这个队列了。当然,我们还可以建立一个报警队列,用独立的消费者来进行监测和报警。

9.3.1.代码架构图

image-20220627103335772

9.3.2.修改配置类
@Configuration
public class ConfirmConfig {

    //交换机
    public static final String CONFIRM_EXCHANGE_NAME = "confirm_exchange";

    //队列
    public static final String CONFIRM_QUEUE_NAME = "confirm_queue";

    //RoutingKey
    public static final String CONFIRM_ROUTING_KEY = "key1";

    //备份交换机
    public static final String BACKUP_EXCHANGE_NAME = "backup_exchange";
    //备份队列
    public static final String BACKUP_QUEUE_NAME = "backup_queue";
    //报警队列
    public static final String WARNING_QUEUE_NAME = "warning_queue";

    //声明交换机
    @Bean("confirmExchange")
    public DirectExchange confirmExchange(){
        return ExchangeBuilder.directExchange(CONFIRM_EXCHANGE_NAME).durable(true).withArgument("alternate-exchange",BACKUP_EXCHANGE_NAME).build();
    }
    @Bean("confirmQueue")
    public Queue confirmQueue(){
        return QueueBuilder.durable(CONFIRM_QUEUE_NAME).build();
    }
    //绑定
    @Bean
    public Binding queueBindingExchange(@Qualifier("confirmQueue") Queue confirmQueue,
                                        @Qualifier("confirmExchange") DirectExchange confirmExchange){
        return BindingBuilder.bind(confirmQueue).to(confirmExchange).with(CONFIRM_ROUTING_KEY);
    }

    //备份交换机
    @Bean("backupExchange")
    public FanoutExchange backupExchange(){
        return new FanoutExchange(BACKUP_EXCHANGE_NAME);
    }
    @Bean("backupQueue")
    public Queue backupQueue(){
        return QueueBuilder.durable(BACKUP_QUEUE_NAME).build();
    }

    @Bean("warningQueue")
    public Queue warningQueue(){
        return QueueBuilder.durable(WARNING_QUEUE_NAME).build();
    }


    //绑定
    @Bean
    public Binding backupQueueBindingBackupExchange(@Qualifier("backupQueue") Queue backupQueue,
                                        @Qualifier("backupExchange") FanoutExchange backupExchange){
        return BindingBuilder.bind(backupQueue).to(backupExchange);
    }

    //绑定
    @Bean
    public Binding warningQueueBindingBackupExchange(@Qualifier("warningQueue") Queue warningQueue,
                                        @Qualifier("backupExchange") FanoutExchange backupExchange){
        return BindingBuilder.bind(warningQueue).to(backupExchange);
    }
}

9.3.3.报警消费者
@Component
@Slf4j
public class WarningConsumer {
    //接收报警信息
    @RabbitListener(queues = ConfirmConfig.WARNING_QUEUE_NAME)
    public void receiveWarningMsg(Message message){
        String msg = new String(message.getBody());
        log.error("报警发现不可路由消息:{}",msg);
    }
}
9.3.4.注意测试事项

重新启动项目的时候需要把原来的confirm.exchange删除因为我们修改了其绑定属性。

9.3.5.结果分析

image-20220627110908059

mandatory参数与备份交换机可以一起使用的时候,如果两者同时开启,消息究竟何去何从呢?谁优先级高,经过上面结果显示答案是备份交换机优先级高。

十、RabbitMQ其他知识点

10.1.幂等性

10.1.1.概念

用户对于同一操作发起的一次请求或者多次请求的结果是一致的,不会因为多次点击而产生了副作用。 举个最简单的例子,那就是支付,用户购买商品后支付,支付扣款成功,但是返回结果的时候网络异常, 此时钱已经扣了,用户再次点击按钮,此时会进行第二次扣款,返回结果成功,用户查询余额发现多扣钱 了,流水记录也变成了两条。在以前的单应用系统中,我们只需要把数据操作放入事务中即可,发生错误立即回滚,但是再响应客户端的时候也有可能出现网络中断或者异常等等.

10.1.2.消息重复消费

消费者在消费 MQ 中的消息时,MQ 已把消息发送给消费者,消费者在给 MQ 返回 ack 时网络中断, 故 MQ 未收到确认信息,该条消息会重新发给其他的消费者,或者在网络重连后再次发送给该消费者,但实际上该消费者已成功消费了该条消息,造成消费者消费了重复的消息。

10.1.3.解决思路

MQ消费者的幂等性的解决一般使用全局ID或者写个唯一标识比如时间戳或者UUID或者订单消费者消费MQ中的消息也可利用MQ的该id来判断,或者可按自己的规则生产一个全局唯一id,每次消费消息时用该id先判断该消息是否已消费过。

10.1.4.消费端的幂等性保障

在海量订单生成的业务高峰期,生产端有可能就会重复发生了消息,这时候消费端就要实现幂等性, 这就意味着我们的消息永远不会被消费多次,即使我们收到了一样的消息。

业界主流的幂等性有两种操作:

  • 唯一 ID + 指纹码机制,用数据库主键去重;
  • 利用 redis 的原子性去实现。
10.1.5.唯一 ID + 指纹码机制

指纹码:我们的一些规则或者时间戳加别的服务给到的唯一信息码,它并不一定是我们系统生成的,基本都是由我们的业务规则拼接而来,但是一定要保证唯一性,然后就利用查询语句进行判断这个 id 是否存在数据库中,优势就是实现简单就一个拼接,然后查询判断是否重复;劣势就是在高并发时,如果是单个数据库就会有写入性能瓶颈当然也可以采用分库分表提升性能,但也不是我们最推荐的方式。

10.1.6.Redis 原子性

利用 redis 执行 setnx 命令,天然具有幂等性,从而实现不重复消费。

10.2.优先级队列

10.2.1.使用场景

在我们系统中有一个订单催付的场景,我们的客户在天猫下的订单,淘宝会及时将订单推送给我们,如果在用户设定的时间内未付款那么就会给用户推送一条短信提醒,很简单的一个功能对吧。

但是,天猫商家对我们来说,肯定是要分大客户和小客户的对吧,比如像苹果、小米这样大商家一年起码能给我们创造很大的利润,所以理应当然,他们的订单必须得到优先处理,而曾经我们的后端系统是使用 redis 来存放的定时轮询,大家都知道 redis 只能用 List 做一个简简单单的消息队列,并不能实现一个优先级的场景,所以订单量大了后采用 RabbitMQ 进行改造和优化,如果发现是大客户的订单给一个相对比较高的优先级, 否则就是默认优先级。

10.2.2.如何添加

控制台页面添加

image-20220627114400443

队列中代码添加优先级

生产者

 Map<String,Object> arguments = new HashMap<>();
        //官方允许是0-255之间,此处设置10  允许优先级范围为0-10  不要设置过大 浪费CPU与内存
        arguments.put("x-max-priority",10);
        channel.queueDeclare(QUEUE_NAME,true,false,false,arguments);

生产消息中代码添加优先级

                AMQP.BasicProperties properties=
                        new AMQP.BasicProperties().builder().priority(5).build();
                channel.basicPublish("",QUEUE_NAME,properties,message.getBytes());

注意事项:

要让队列实现优先级需要做的事情有如下事情:队列需要设置为优先级队列,消息需要设置消息的优先级,消费者需要等待消息已经发送到队列中才去消费因为,这样才有机会对消息进行排序。

10.2.3.实战

生产者

public class PriorityProducer {
    private static final String QUEUE_NAME = "hello";

    public static void main(String[] args) throws Exception {
        Channel channel = RabbitMqUtils.getChannel();

        //给消息赋予一个 priority 属性
        AMQP.BasicProperties properties = new AMQP.BasicProperties().builder().priority(10).build();

        for (int i = 1; i < 11; i++) {
            String message = "info" + i;
            if (i == 5) {
                channel.basicPublish("", QUEUE_NAME, properties, message.getBytes());
            } else {
                channel.basicPublish("", QUEUE_NAME, null, message.getBytes());
            }
            System.out.println("发送消息完成:" + message);
        }
    }

}

消费者

public class PriorityConsumer {
    private final static String QUEUE_NAME = "hello";

    public static void main(String[] args) throws Exception {
        Channel channel = RabbitMqUtils.getChannel();

        //设置队列的最大优先级 最大可以设置到 255 官网推荐 1-10 如果设置太高比较吃内存和 CPU
        Map<String, Object> params = new HashMap();
        params.put("x-max-priority", 10);
        channel.queueDeclare(QUEUE_NAME, true, false, false, params);

        //推送的消息如何进行消费的接口回调
        DeliverCallback deliverCallback = (consumerTag, delivery) -> {
            String message = new String(delivery.getBody());
            System.out.println(message);
        };
        //取消消费的一个回调接口 如在消费的时候队列被删除掉了
        CancelCallback cancelCallback = (consumerTag) -> {
            System.out.println("消息消费被中断");
        };

        channel.basicConsume(QUEUE_NAME, true, deliverCallback, cancelCallback);
    }

}

image-20220627114730328

10.3.惰性队列

10.3.1.使用场景

RabbitMQ 从 3.6.0 版本开始引入了惰性队列的概念。惰性队列会尽可能的将消息存入磁盘中,而在消费者消费到相应的消息时才会被加载到内存中,它的一个重要的设计目标是能够支持更长的队列,即支持更多的消息存储。当消费者由于各种各样的原因 (比如消费者下线、宕机亦或者是由于维护而关闭等) 而致使长时间内不能消费消息造成堆积时,惰性队列就很有必要了。

默认情况下,当生产者将消息发送到 RabbitMQ 的时候,队列中的消息会尽可能的存储在内存之中, 这样可以更加快速的将消息发送给消费者。即使是持久化的消息,在被写入磁盘的同时也会在内存中驻留一份备份。当 RabbitMQ 需要释放内存的时候,会将内存中的消息换页至磁盘中,这个操作会耗费较长的时间,也会阻塞队列的操作,进而无法接收新的消息。虽然 RabbitMQ 的开发者们一直在升级相关的算法, 但是效果始终不太理想,尤其是在消息量特别大的时候。

image-20220627114908015

10.3.2.两种模式

队列具备两种模式:default 和 lazy。默认的为 default 模式,在 3.6.0 之前的版本无需做任何变更。lazy 模式即为惰性队列的模式,可以通过调用 channel.queueDeclare 方法的时候在参数中设置,也可以通过 Policy 的方式设置,如果一个队列同时使用这两种方式设置的话,那么 Policy 的方式具备更高的优先级。 如果要通过声明的方式改变已有队列的模式的话,那么只能先删除队列,然后再重新声明一个新的。

在队列声明的时候可以通过 “x-queue-mode” 参数来设置队列的模式,取值为 “default” 和 “lazy”。下面示例中演示了一个惰性队列的声明细节:

Map<String, Object> args = new HashMap<String, Object>();
args.put("x-queue-mode", "lazy");
channel.queueDeclare("myqueue", false, false, false, args);
10.3.3.内存开销对比

image-20220627120025216

在发送 1 百万条消息,每条消息大概占 1KB 的情况下,普通队列占用内存是 1.2GB,而惰性队列仅仅 占用 1.5MB。

11.RabbitMQ集群

11.1.clustering

11.1.1.使用集群的原因

​ 单机版的RabbitMQ服务无法满足目前真实应用的要求。如果RabbitMQ服务器遇到内存崩溃、机器掉电或者主板故障等情况,该怎么办?单台RabbitMQ服务器可以满足每秒1000条消息的吞吐量,那么如果应用需要RabbitMQ服务满足每秒10万条消息的吞吐量呢?购买安规的服务器来增强单机RabbitMQ的性能显得捉襟见肘,搭建一个RabbitMQ集群才是解决实际问题的关键。

11.1.2.搭建步骤

1.修改3台机器的主机名称

vim/etc/hostname

2.配置各个节点的hosts文件,让各个节点都能互相识别对方

vim/etc/hosts

10.211.55.74node1

10.211.55.75node2
10.211.55.76node3

image-20220627122311038

3.以确保各个节点的cookie文件使用的是同一个值

在node1上执行远程操作命令

scp /var/lib/rabbitmq/.erlang.cookie root@node2:/var/lib/rabbitmq/.erlang.cookie

scp/var/lib/rabbitmq/.erlang.cookieroot@node3:/var/lib/rabbitmq/.erlang.cookie

4.启动RabbitMQ服务,顺带启动Erlang虚拟机和RbbitMQ应用服务(在三台节点上分别执行以下命令)

rabbitmq-server-detached

5.在节点2执行

rabbitmqctl stop_app
(rabbitmqctl stop会将Erlang虚拟机关闭,rabbitmqctl stop_app只关闭RabbitMQ服务)
rabbitmqctl reset
rabbitmqctl join_cluster rabbit@node1
rabbitmqctl start_app(只启动应用服务)

6.在节点3执行

rabbitmqctl stop_app
rabbitmqctl reset
rabbitmqctl join_cluster rabbit@node2
rabbitmqctl start_app

7.集群状态

rabbitmqctl cluster_status

8.需要重新设置用户

创建账号

rabbitmqctl add_user admin 123

设置用户角色

rabbitmqctl set_user_tags admin administrator

设置用户权限

rabbitmqctl set_permissions -p "/" admin ".*" ".*" ".*"

9.解除集群节点(node2和node3机器分别执行)

rabbitmqctl stop_app
rabbitmqctl reset
rabbitmqctl start_app
rabbitmqctl cluster_status
rabbitmqctl forget_cluster_node rabbit@node2(node1机器上执行)

11.2.镜像队列

11.2.1. 使用镜像的原因

如果RabbitMQ集群中只有一个Broker节点,那么该节点的失效将导致整体服务的临时性不可用,并且也可能会导致消息的丢失。可以将所有消息都设置为持久化,并且对应队列的durable属性也设置为true,但是这样仍然无法避免由于缓存导致的问题:因为消息在发送之后和被写入磁盘井执行刷盘动作之间存在一个短暂却会产生问题的时间窗。通过publisherconfirm机制能够确保客户端知道哪些消息己经存入磁盘,尽管如此,一般不希望遇到因单点故障导致的服务不可用。

引入镜像队列(MirrorQueue)的机制,可以将队列镜像到集群中的其他Broker节点之上,如果集群中的一个节点失效了,队列能自动地切换到镜像中的另一个节点上以保证服务的可用性。

11.2.2.搭建步骤

1.启动三台集群节点

2.随便找一个节点添加policy

在这里插入图片描述

3.在node1上创建一个队列发送一条消息,队列存在镜像队列

image-20220627123659030

4.停掉node1之后发现node2成为镜像队列

image-20220627123716719

image-20220627123725680

5.就算整个集群只剩下一台机器了依然能消费队列里面的消息

说明队列里面的消息被镜像队列传递到相应机器里面了

11.3.Haproxy+Keepalive实现高可用负载均衡

11.3.1.整体架构图

image-20220627152754970

11.3.2.Haproxy实现负载均衡

HAProxy提供高可用性、负载均衡及基于TCPHTTP应用的代理,支持虚拟主机,它是免费、快速并且可靠的一种解决方案,包括Twitter,Reddit,StackOverflow,GitHub在内的多家知名互联网公司在使用。HAProxy实现了一种事件驱动、单一进程模型,此模型支持非常大的井发连接数。

11.3.3.搭建步骤

1.下载haproxy(在node1和node2)

yum -y install haproxy

2.修改node1和node2的haproxy.cfg

vim /etc/haproxy/haproxy.cfg

需要修改红色IP为当前机器IP

image-20220627152952793

3.在两台节点启动haproxy

haproxy -f /etc/haproxy/haproxy.cfg

ps-ef | grephaproxy

4.访问地址

http://10.211.55.71:8888/stats
11.3.4.Keepalived实现双机(主备)热备

试想如果前面配置的HAProxy主机突然宕机或者网卡失效,那么虽然RbbitMQ集群没有任何故障但是对于外界的客户端来说所有的连接都会被断开结果将是灾难性的为了确保负载均衡服务的可靠性同样显得十分重要,这里就要引入Keepalived它能够通过自身健康检查、资源接管功能做高可用(双机热备),实现故障转移.

11.3.5.搭建步骤

1.下载keepalived

yum-yinstallkeepalived

2.节点node1配置文件

vim/etc/keepalived/keepalived.conf

把资料里面的keepalived.conf修改之后替换

3.节点node2配置文件

需要修改 global_defs的router_id,如:nodeB

其次要修改 vrrp_instance_VI中state为"BACKUP";

最后要将priority设置为小于100的值

4.添加haproxy_chk.sh

(为了防止HAProxy服务挂掉之后Keepalived还在正常工作而没有切换到Backup上,所以这里需要编写一个脚本来检测HAProxy务的状态,当HAProxy服务挂掉之后该脚本会自动重启HAProxy的服务,如果不成功则关闭Keepalived服务,这样便可以切换到Backup继续工作)

vim/etc/keepalived/haproxy_chk.sh(可以直接上传文件)
修改权限chmod 777 /etc/keepalived/haproxy_chk.sh

5.启动keepalive命令(node1和node2启动)

systemctl start keepalived

6.观察Keepalived的日志

tail-f/var/log/messages-n200

7.观察最新添加的vip

ip add show

8.node1模拟keepalived关闭状态

systemctl stop keepalived

9.使用vip地址来访问rabbitmq集群

11.4.FederationExchange

11.4.1.使用它的原因

(broker北京),(broker深圳)彼此之间相距甚远,网络延迟是一个不得不面对的问题。有一个在北京的业务(Client北京)需要连接(broker北京),向其中的交换器exchangeA发送消息,此时的网络延迟很小,(Client北京)可以迅速将消息发送至exchangeA中,就算在开启了publisherconfirm机制或者事务机制的情况下,也可以迅速收到确认信息。此时又有个在深圳的业务(Client深圳)需要向exchangeA发送消息,那么(Client深圳) (broker北京)之间有很大的网络延迟,(Client深圳)将发送消息至exchangeA会经历一定的延迟,尤其是在开启了publisherconfirm机制或者事务机制的情况下,(Client深圳)会等待很长的延迟时间来接收(broker北京)的确认信息,进而必然造成这条发送线程的性能降低,甚至造成一定程度上的阻塞。将业务(Client深圳)部署到北京的机房可以解决这个问题,但是如果(Client深圳)调用的另些服务都部署在深圳,那么又会引发新的时延问题,总不见得将所有业务全部部署在一个机房,那么容灾又何以实现?这里使用Federation插件就可以很好地解决这个问题.

image-20220627153639798

11.4.2.搭建步骤

1.需要保证每台节点单独运行

2.在每台机器上开启federation相关插件

rabbitmq-plugins enable rabbitmq_federation
rabbitmq-plugins enable rabbitmq_federation_management

image-20220627153906576

3.原理图(先运行consumer在node2创建fed_exchange)

image-20220627154059515

4.在downstream(node2)配置upstream(node1)

(代码添加)

image-20220627154238772

5.添加policy

在这里插入图片描述

11.5.FederationQueue

11.5.1.使用它的原因

联邦队列可以在多个Broker节点(或者集群)之间为单个队列提供均衡负载的功能。一个联邦队列可以连接一个或者多个上游队列(upstreamqueue),并从这些上游队列中获取消息以满足本地消费者消费消息的需求。

11.5.2.搭建步骤

1.原理图

image-20220627154935299

2.添加upstream(同上)

3.添加policy

image-20220627155037519

11.6.Shovel

11.6.1.使用它的原因

Federation具备的数据转发功能类似,Shovel够可靠、持续地从一个Broker中的队列(作为源端,即source)拉取数据并转发至另一个Broker中的交换器(作为目的端,即destination)。作为源端的队列和作为目的端的交换器可以同时位于同一个Broker,也可以位于不同的Broker上。Shovel可以翻译为"铲子",是一种比较形象的比喻,这个"铲子"可以将消息从一方"铲子"另一方。Shovel行为就像优秀的客户端应用程序能够负责连接源和目的地、负责消息的读写及负责连接失败问题的处理。

11.6.2.搭建步骤

1.开启插件(需要的机器都开启)

rabbitmq-plugins enable rabbitmq_shovel
rabbitmq-plugins enable rabbitmq_shovel_management

image-20220627155155723

2.原理图(在源头发送的消息直接回进入到目的地队列)

image-20220627155220445

3.添加shovel源和目的地

image-20220627155512872

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值