p.s. 公式有点多, 可能会出现公式加载失败, 尝试刷新即可
本文分为三个部分介绍傅里叶变换
- 傅里叶分析直观体验: 来自知乎-傅里叶分析之掐死教程
- 傅里叶展开与变换的推导: 来自哔哩哔哩-纯干货傅里叶变换
- 傅里叶应用: 来自哔哩哔哩-现代计算机图形学入门
傅里叶分析直观体验
法国数学家傅里叶认为,任何周期函数都可以用正弦函数和余弦函数构成的无穷级数来表示
频域与时域
有一段声波, 我们可以将其表示为一段声波曲线

这是一个时间与声波的函数曲线, 我们将其称之为声音的时域表达. 然而, 我们没法从声音中获得更多的信息(如他们是由那些音符合成的?), 我们希望用音符的方式表达音乐(比如/duo/是在那些时候发出的, /ruai/是在什么时候发出的?), 有了这些信息, 我们就可以合成这段声波, 这称为声波的频域表达
前面声波的例子中横轴是时间, 我们可以很轻松的将其理解为时域表达, 对于普通函数图像, 我们也可以将其理解成时域表达. 例如, 下面是一个方波

我们可以认为其是方波的时域表达, 同时, 我们可以用无穷个三角函数的和逼近他

最前面黑色的线就是所有正弦波叠加而成的总和,也就是越来越接近矩形波的那个图形。而后面依不同颜色排列而成的正弦波就是组合为矩形波的各个分量, 其频域表达如下

看起来比较奇怪, 实际上, 他就是从侧面看图

更加完整的表示

我们也将频域表示图称为时域的频谱
相位谱
在前面, 我们使用三角函数累加逼近一个函数, 一个描述三角函数需要描述其频率, 震幅, 相位. 频率就是频谱的横坐标, 震幅可以用频谱的纵坐标表示, 但是我们没办法表示相位. 所以还需要补充一个相位谱

先找出波峰到频率轴的水平距离, 在用这个值除以周期, 就得到了相位大学
傅里叶级数到傅里叶变换
傅里叶认为可以用无穷个频率依次上升的三角函数的无穷级数贴近一个函数, 就像下面这样

如果忽略级数, 将频率之间的差值变小呢? 从累加 ∑ n = 0 ∞ f n ( x ) \sum_{n=0}^{\infty}f_n(x) ∑n=0∞fn(x)变成了 ∫ 0 ∞ f ω ( x ) d ω \int_0^{\infty}f_\omega(x)d\omega ∫0∞fω(x)dω

这就是从傅里叶级数到傅里叶变换的过程
傅里叶变换就是将时域表示转换为频域表示. 逆傅里叶变换就是将频域表示转换为时域表示
将三角函数表示在频谱上
频谱看起来很好画, 比如上图, 从侧面观测一下, 我们就可以得到频谱, 但是有个小问题, 在级数那里, 我们还可以看到三角函数之间夹着的的彩色直线, 那些也是参与累加的三角函数, 波浪的是 cos \cos cos函数, 直线是 sin \sin sin函数, 只不过 ω = 0 \omega = 0 ω=0, 所以表达成了直线, 我们如何用一个数同时表达 cos \cos cos与 sin \sin sin的频率呢? 借用复平面与欧拉公式

最后得到傅里叶变换频谱

傅里叶变换推导
三角函数正交性
-
三角函数系定义如下:
{ 1 , sin x , cos x , … , sin n x , cos n x , … , sin m x , cos m x , … } \{ 1, \sin x, \cos x, \ldots, \sin nx, \cos nx, \ldots , \sin mx, \cos mx, \ldots \} { 1,sinx,cosx,…,sinnx,cosnx,…,sinmx,cosmx,…}
在这里, 可以将 1 1 1看作是 cos 0 x \cos 0x cos0x, 还可以为三角函数系加上一个元素 0 0 0(即 sin 0 x \sin 0x sin0x)
-
正交函数定义如下:
若 f ( x ) f(x) f(x), g ( x ) g(x) g(x)在区间 [ a , b ] [a,b] [a,b]上有定义, 且
∫ a b f ( t ) g ( t ) d t = 0 \int_a^b f(t)g(t)dt = 0 ∫abf(t)g(t)dt=0
那么就说 f ( x ) , g ( x ) f(x), g(x) f(x),g(x)在区间 [ a , b ] [a,b] [a,b]上正交 -
三角函数系的正交性: 任意两个三角函数系的函数( m ≠ n m\neq n m=n)的积在区间长度为 2 π 2\pi 2π的区间上内积分为 0 0 0, 证明如下:
首选选取积分范围为 [ − π , π ] [-\pi, \pi] [−π,π](其他区间可以由周期函数性质推得)
-
若选取 f ( x ) = sin n x f(x) = \sin nx f(x)=sinnx, g ( x ) = cos m x g(x) = \cos mx g(x)=cosmx, 积分为
∫ − π π sin n x cos m x d x \int_{-\pi}^\pi \sin nx \ \cos mx \ dx ∫−ππsinnx cosmx dx
由奇函数性质可知积分为 0 0 0 -
若选取 f ( x ) = cos n x f(x) = \cos nx f(x)=cosnx, g ( x ) = cos m x g(x) = \cos mx g(x)=cosmx, 积分为
∫ − π π cos n x cos m x d x \int_{-\pi}^\pi \cos nx \ \cos mx \ dx ∫−ππcosnx cosmx dx
由积化和差公式cos α cos β = 1 2 [ cos ( α + β ) + cos ( α − β ) ] \cos \alpha \ \cos \beta = \frac{1}{2}[\cos(\alpha+\beta)+\cos(\alpha-\beta)] cosα cosβ=21[cos(α+β)+cos(α−β)]
知,
-
当 m ≠ n m \neq n m=n时:
KaTeX parse error: No such environment: align at position 8: \begin{̲a̲l̲i̲g̲n̲}̲ & \int_{-\pi}^… -
顺便看一下当 m = n m = n m=n时:
KaTeX parse error: No such environment: align at position 8: \begin{̲a̲l̲i̲g̲n̲}̲ & \int_{-\pi}^…
-
-
若选取 f ( x ) = sin n x f(x) = \sin nx f(x)=sinnx, g ( x ) = sin m x g(x) = \sin mx g(x)=sinmx, 积分为
∫ − π π sin n x sin m x d x \int_{-\pi}^\pi \sin nx \ \sin mx \ dx ∫−ππsinnx sinmx dx
由积化和差公式sin α sin β = − 1 2 [ cos ( α + β ) − cos ( α
-
本文深入浅出地介绍了傅里叶变换的概念,包括傅里叶分析的基本思想、频域与时域的关系、相位谱的重要性,以及傅里叶级数到傅里叶变换的演变过程。通过推导证明了三角函数的正交性,并详细展示了傅里叶变换在周期函数和非周期函数中的应用。最后,讨论了傅里叶变换在滤波和图像处理中的关键作用。
最低0.47元/天 解锁文章
3982

被折叠的 条评论
为什么被折叠?



