Carlosi
码龄7年
关注
提问 私信
  • 博客:23,525
    23,525
    总访问量
  • 27
    原创
  • 879,538
    排名
  • 4
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
  • 目前就职: 滴滴
  • 加入CSDN时间: 2018-03-23
博客简介:

Lmoermo的博客

查看详细资料
个人成就
  • 获得6次点赞
  • 内容获得7次评论
  • 获得58次收藏
  • 博客总排名879,538名
创作历程
  • 25篇
    2021年
  • 1篇
    2020年
  • 1篇
    2019年
  • 1篇
    2018年
成就勋章
TA的专栏
  • 机器学习
    8篇
  • 笔记
    5篇
  • NLP
    5篇
  • 神经网络
    10篇
  • IT
    5篇
  • java基础
    1篇
兴趣领域 设置
  • 大数据
    flink
  • 人工智能
    opencv语音识别计算机视觉机器学习深度学习神经网络自然语言处理tensorflowpytorch图像处理nlp数据分析
创作活动更多

『技术文档』写作方法征文挑战赛

在技术的浩瀚海洋中,一份优秀的技术文档宛如精准的航海图。它是知识传承的载体,是团队协作的桥梁,更是产品成功的幕后英雄。然而,打造这样一份出色的技术文档并非易事。你是否在为如何清晰阐释复杂技术而苦恼?是否纠结于文档结构与内容的完美融合?无论你是技术大神还是初涉此领域的新手,都欢迎分享你的宝贵经验、独到见解与创新方法,为技术传播之路点亮明灯!

50人参与 去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

拼写纠错(Spelling Correct)技术方案总结

1 纠错基础知识 1.1 常见错误类型 1.2 纠错组成模块 2 深度学习技术 2.1 FASPell(爱奇艺) 2.1.1 技术方案 2.1.1.1 背景 2.1.1.2 模型结构 2.1.1.3 训练过程 2.1.2 优点和缺点 2.2 SpellGCN (阿里) 2.2.1 技术方案 2.2.1.1 背景 2.2.1.2 模型结构 2.2.1.3 训练过程 2.2
原创
发布博客 2021.09.03 ·
2001 阅读 ·
2 点赞 ·
0 评论 ·
21 收藏

基于pytorch模型剪枝的实现(极大的减少模型计算参数加快模型运行速度)

深度模型剪枝实现以及一些网络优化技巧模型剪枝:Learning Efficient Convolutional Networks Through Network Slimming (ICCV 2017). 基于论文的代码复现以及拓展: 在网络上中加入其它优化方法 最强深度学习优化器Ranger warm up与consine learning rate 为什么使用warmup? label smooth apex混合精度训练 梯度累加 其他网络部署的
原创
发布博客 2021.09.02 ·
977 阅读 ·
0 点赞 ·
0 评论 ·
5 收藏

多GPU训练半精度和单精度问题

125|0%| | 0/1 [00:00<?, ?it/s] 0%| | 0/1 [03:24<?, ?it/s]126|Traceback (most recent call last):127|File "/nfs/volume-826-2/carlos/0830_dector/ja/AA_gector-master/train.py", line 305, in <module>128|args = parser.parse_args()129|Fil...
原创
发布博客 2021.09.02 ·
1914 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

AllenNLP 用法总结

AllenNLP另外很重要的一点在于,它在torch的model的基础上添加了很多的方法,使得模型更加适用于NLP场景的使用。AllenNLP设计模型的思想在于:输出为dict格式,里面必须包含loss,其余则由我们自行决定。因此输出相比传统的pytorch模型,输出更加的丰富,我们可以把我们任何想要的信息都通过这个字典返回~model.py文件有370多行,大体上需要注意的是__init__ 里要传入vocab与regularizer get_regularization_penal
原创
发布博客 2021.09.01 ·
1760 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

评价指标汇总--------汇总

在使用机器学习算法过程中,针对不同的问题需要不用的模型评估标准,这里统一汇总。主要以两大类分类与回归分别阐述。一、分类问题混淆矩阵是监督学习中的一种可视化工具,主要用于比较分类结果和实例的真实信息。矩阵中的每一行代表实例的预测类别,每一列代表实例的真实类别。真正(True Positive , TP):被模型预测为正的正样本。假正(False Positive , FP):被模型预测为正的负样本。假负(False Negative , FN):被模型预测为负的正样本。真..
原创
发布博客 2021.09.01 ·
506 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

Python 个人总结的一些常用函数

数据集 AC错误 BD正确# -*- coding: utf-8 -*-chrome://flags/#extensions-on-chrome-urls问题: Initializing libiomp5.dylib, but found libomp.dylib already initialized.import osos.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"带颜色的字体from colorama import Fore, Ba...
原创
发布博客 2021.09.01 ·
796 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

日语纠错问题 拼写纠错

目前在做日语纠错任务,主要是为了解决公司query召回率低的问题,目前可行的方案有下面几个:一个是科大讯飞的那个gector模型 ,他主要是利用了bert或者Robert来做特征提取,然后会在最后接上两个全链接网络,分别用来输出每个日语单词纠正的对象可他们本身错误的概率值信息,通过对他们的结果分别求得一个loss值来进行反向梯度传递,不断进行训练以此达到最优值,其中错误数据的是我通过罗马音和编辑距离为一的一些词进行随机的替换构成的,以此来模仿真实地错误数据。未完待续。。另外一个就是根据Be...
原创
发布博客 2021.09.01 ·
693 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

NLP资源汇总——自己整理

发布资源 2021.08.31 ·
docx

用深度强化学习玩雅达利-------汇总

发布资源 2021.08.31 ·
docx

深度学习的研究论文——汇总

发布资源 2021.08.31 ·
pdf

图论

图的概念图是一种非线性的数据结构,一个图中有两类东西,一种是结点,一种是边.我们用V这个集合来表示节点(vertex),还需要另一个集合来存储所有的边,我们用E来表示(Edge),那么一个图就可以表示为:G=(V,E);带箭头的称为有向图,否则称为无向图.如果一个图的任意两个结点之间有且只有一条边,则称此图为无向完全图,若任意两个结点之间有且只有方向相反的两条边,则称为有向完全图.度是针对结点来说的, 又分为出度和入度,对于有向图来说,出度就是指以这个结点为起始的边的条数(箭头向外),入度则是以这个
原创
发布博客 2021.08.31 ·
168 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

11款程序员实用工具

优秀程序员之所以优秀的原因并不一定是他写代码的速度比所有人都快,但他解决事情的效率一定是比很多人都要高的,提升工作效率的方法并不需要我们十八般武艺样样精通,有时候使用好的工具就能帮助我们大大提升办事效率。今天给大家分享11个程序员建议收藏的工具,老少皆宜,尤其是新手程序员,技术水平一时半会儿可能难以提升,需要持之以恒地学习和练习,但工具用得好,做事效率是可以快速提升的。一、CSDN浏览器助手(开发者必备的浏览器插件)这是CSDN官方推出的一款浏览器插件,也是我一直在用的一款比较不错的工具,我这里没
转载
发布博客 2021.08.29 ·
890 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

GAN生成对抗网络汇总————GAN生成对抗网络.docx

发布资源 2021.08.29 ·
docx

LSTM网络汇总——LSTM网络.docx

发布资源 2021.08.29 ·
docx

git 所有汇总命令总结git命令.doc

发布资源 2021.08.29 ·
doc

排序算法总结排序算法.png

发布资源 2021.08.29 ·
png

自动写诗机器人Lishangyin.zip

发布资源 2021.08.29 ·
zip

增强生成模型项目具体实现

发布资源 2021.08.29 ·
zip

GOOGLE 谷歌翻译实现

1、访问速度太快被封req = urllib.request.Request(url=url, headers=headers)response = urllib.request.urlopen(req)data = response.read().decode('utf-8')2、稳定但是速度太慢response,prediction = translator.translate(content, dest='es',src='es')3、速度稍微快一些url_encode_...
原创
发布博客 2021.08.29 ·
173 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

Transformer Encoder

ERNIE 采用了 Transformer Encoder 作为其语义表示的骨架。Transformer 是由论文Attention is All You Need首先提出的机器翻译模型,在效果上比传统的 RNN 机器翻译模型更加优秀。Transformer 的简要结构如图1所示,基于 Encoder-Decoder 框架, 其主要结构由 Attention(注意力) 机制构成:Encoder 由全同的多层堆叠而成,每一层又包含了两个子层:一个Self-Attention层和一个前馈神经网络。Self.
原创
发布博客 2021.08.29 ·
601 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏
加载更多