The business of death is changing around the world

The trend towards fewer burials and more cremations is likely to continue

EVERY minute more than 100 people die. Most of these deaths bring not just grief to some, but also profit to others. America’s 2.7m-odd deaths a year underpin an industry worth 16bnin2017,encompassingover19,000funeralhomesandover120,000employees.InFrancethesectorisworthanestimated2.5bn(3.1bn). The German market was worth €1.5bn in 2014 and employed nearly 27,000 people, a sixth of them undertakers. In Britain the industry, estimated to be worth around £2bn ($2.8bn), employs over 20,000 people, a fifth of them undertakers.

In religious countries, burial is still the norm; Ireland buries 82% of its dead, Italy 77%. But over half of Americans are cremated, up from less than 4% in 1960, and this is expected to rise to 79% by 2035. In Japan, where the practice is seen as purification for the next life, it is nearly universal. Cremation, direct or otherwise, is not the only rival to old-fashioned burial. A study in 2015 found that over 60% of Americans in their 40s and older would consider a “green” burial, with no embalming and a biodegradable casket, if any. Five years before the proportion was just over 40%.

Around the world


DescriptionnnOver the years, FJ has made a huge number of farmer friends all around the world. Since he hasn't visited 'Farmer Ted' from England and 'Boer Harms' from Holland for a while, he'd like to visit them. nnHe knows the longitude of the farm where each of his worldwide friends resides. This longitude is an angle (an integer in the range 0..359) describing the farm's location on the Earth, which we will consider to be a circle instead of the more complex and traditional spherical representation. Except for the obvious discontinuity, longitudes increase when traveling clockwise on this circle. nnFJ plans to travel by airplane to visit his N (1 <= N <= 5,000) friends (whose farms are uniquely numbered 1..N). He knows the schedules for M (1 <= M <= 25,000) bidirectional flights connecting the different farms. Airplanes always travel shortest paths on the Earth's surface (i.e., on the shortest arc of a circle). nnThere will always be a unique shortest path between two farms that are directly connected. No pair of antipodal farms (exactly opposite each other on the circle) is ever directly connected. nnEach airplane flight can be described as traveling in clockwise or counterclockwise direction around the Earth's surface. For example, a flight from longitude 30 to longitude 35 would be clockwise, as would be a flight from longitude 350 to longitude 10. However, a flight from longitude 350 to longitude 200 follows a shortest path counterclockwise around the circle. nnFJ would find it very cool if he could make a trip around the world, visiting some of his friends along the way. He'd like to know if this is possible and if so, what is the minimum number of flights he can take to do so. nnHe wants to start and finish his journey at the location of his best friend (the one listed first in the input below). In order to make sure he actually circles the Earth, he wants to ensure that the clockwise distance he travels is different from the counterclockwise distance he travels.nInputnn* Line 1: Two space-separated integers: N and M nn* Lines 2..N+1: Line i+1 contains one integer: the longitude of the i-th farm. Line 2 contains the location of the farm of his best friend. nn* Lines N+2..N+M+1: Line i+N+1 contains two integers giving the indices of two farms that are connected by a flight. nOutputnn* Line 1: A single integer specifying the minimum number of flights FJ needs to visit to make a trip around the world. Every time FJ moves from one farm to another counts as one flight. If it is impossible to make such a trip, output the integer -1. nSample Inputnn3 3n0n120n240n1 2n2 3n1 3nSample Outputnn3


  • 广告
  • 抄袭
  • 版权
  • 政治
  • 色情
  • 无意义
  • 其他