题解 NOIP提高组2003 神经网络(拓扑排序+向前星)

本文是关于NOIP提高组2003年神经网络问题的题解,重点讨论了如何利用拓扑排序和向前星数据结构解决题目中涉及的算法问题。在分析中,提到了输入层和传输层的处理技巧,以及如何初始化、读入数据、预处理和构建拓扑队列。文章还给出了完整的代码实现,并强调了答案输出的排序要求。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

写在读前:坑点略多,但数据量较小;
此题解仅代表笔者的一己之见,若有所偏差或失误请读者多多指出并加以海涵;
若您有更好的理解及方法欢迎在评论区分享高见共同讨论。

先上题目地址请移步洛谷;

题目(题目截图用于学习):

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
输入:

5 6
1 0
1 0
0 1
0 1
0 1
1 3 1
1 4 1
1 5 1
2 3 1
2 4 1
2 5 1

输出:

3 1
4 1
5 1

题目分析与算法设计:

先说题目中的Ci和Ui,Ci与Ui包括边权都可以为0为负,但值得一提的是题目中所给的“输入层”一开始就处于活跃状态,即“输入层”的Ui就不用管了233333
再来说“传输层”,“传输层”只有当接收到的能量突破阈值(即使Ui>0)的时候,才可以处于活跃状态,具有往下传输能力。
在这里插入图片描述
而这个公式,意即当轮到这个结点传输能量时,其具有的能量是上一层与它相连的所有结点的(C值乘以相连路径权值)的和,当然,如果上一层某个结点没有处于活跃态(即C值小于等于0),就不能传输能量,便不用纳入计算。

说一个处理的技巧,在输入结点的初始状态时,将该点的C值设为-U,这样后续就可以直接拿C来计算,不用管U值了,因为U值的作用即根据接收到的能量能否突破阈值来判断该点能否处于活跃态,而这样处理便可以等价转换为依据C是否大于0判断该点是否处于活跃态。当然,“输入层”的结点本身就处于活跃态,便可以不做处理。

题目看起来比较复杂,细节较多,但核心算法只有一个拓扑

从输入层开始bfs图,遇到入度为0的点加入队列,遇到输出层且活跃(即出度为0,C值大于0)的点加入答案队列;

数据结构:

在储存图时笔者采用了后续处理起来比较方便的向前星,不了解的读者可以参考这篇博客,在前半段有向前星的详细讲解;
在储存入度为0的结点时使用的是具有三个参数(i,Ci,Ui)的queue队列,在储存答案时使用的是vector(参数同上)数组;

struct node1{
   
	 int num;
	 int ui,ci;
};
node1 a[105];

模块设计、分块讲解:

初始化、读入与预处理:

使用先前星储存图,将除“输入层”外每个结点的U值转移到C值上,并且构建最初的拓扑队列;

	for(int i=1;i<=n;i++){
   						//a为结点信息
	 	 scanf("%d%d",&a[i].ci,&a[i].ui);
		 a[i].num=i;
		 if(a[i].ci==0) a[i].ci-=a[i].ui;		//对除输入层以外结点做“转移操作”
	 }

	 for(int num=0;num<m;num++){
   				//向前星储存图
	 	 int u
<think>好的,我现在需要处理用户的问题,他想要找一些类似P3916和P5318的题目,但不要涉及多源BFS和Tarjan算法。首先,我要先回顾一下用户之前提到的这两道题目的特点,这样才能更准确地理解他的需求。 P5318是【深基18.例3】查找文献,主要考察邻接表的构建以及基础的DFS和BFS遍历,同时需要对邻接表中的节点进行排序,确保访问顺序正确。而P3916是图的遍历,需要反向建图并通过遍历找到每个节点能到达的最大编号节点。这两题的共同点是都使用邻接表结构,重点在于DFS/BFS的基础应用,可能还涉及一些排序或反向处理的技巧。 用户现在希望找类似的题目,但排除了多源BFS和Tarjan算法。之前的推荐中,P1332涉及多源BFS,P2863使用了Tarjan算法,所以需要排除这些类型的题目,同时保持核心的邻接表和基础遍历的应用。 接下来,我需要回想洛谷或者其他OJ上类似的题目。首先,考虑基础遍历的题目,比如需要处理特定遍历顺序、连通性、路径问题等,同时不涉及复杂算法如Tarjan或多源BFS。 可能的候选题目包括: 1. **P1605 迷宫**:虽然题目是迷宫问题,但可以转化为图的遍历,使用邻接表或矩阵,通过DFS/BFS找路径数。不过迷宫通常用二维数处理,可能不符合邻接表的明确要求,但用户可能需要更直接的图结构题。 2. **P1038 神经网络**:拓扑排序,结合邻接表和BFS,类似P4017,但拓扑排序属于BFS的应用,可能符合条件,但需要确认是否用户认为拓扑排序属于排除范围。用户没明确排除,所以可以考虑。 3. **P1141 01迷宫**:连通块问题,使用BFS/DFS计算每个点所属的连通块大小。虽然通常用网格处理,但可以视为图的邻接表结构,每个点连接到相邻点。不过可能更偏向网格而非显式邻接表,需要判断是否符合用户需求。 4. **P1219 八皇后问题**:虽然是经典回溯,但属于DFS的应用,但可能不涉及邻接表结构,所以不太相关。 5. **P1162 填涂颜色**:同样是网格BFS,处理连通区域,可能不符合邻接表的明确使用。 6. **P1019 单词接龙**:DFS遍历,涉及字符串处理,可能不直接使用邻接表,但可以构建单词之间的邻接关系,可能符合条件。 7. **P1127 词链**:类似单词接龙,欧拉路径问题,可能涉及DFS和邻接表,但需要更复杂的处理,可能属于提高难度。 8. **P1443 马的遍历**:BFS在棋盘上的应用,计算最短步数,但属于网格处理,可能不直接使用邻接表。 9. **P2032 扫描**:滑动窗口,与图论无关,排除。 10. **P2746 [USACO5.3]校园网Network of Schools**:涉及Tarjan算法求强连通分量,已经被用户排除。 可能需要更仔细地寻找。例如,是否有其他题目涉及基础邻接表遍历,如路径问题、连通性、特定顺序遍历等。 另一个方向是查找洛谷题单或用户推荐的题目列表,寻找符合条件的问题。比如: - **P2661 信息传递**:求有向图中的最小环,可以使用DFS或并查集,可能需要邻接表,但涉及环检测,可能属于基础遍历的扩展,但不确定用户是否接受。 - **P2921 [USACO08DEC]Trick or Treat on the Farm**:每个节点出度为1,求每个点出发的路径长度,可以使用DFS记录访问时间或记忆化搜索,属于邻接表遍历的应用,且不涉及复杂算法。 - **P1395 会议**:树的重心问题,通过DFS/BFS计算子树大小,属于树结构的遍历,可能需要邻接表,属于基础应用。 - **P1351 联合权值**:树中距离为2的节点对,通过邻接表遍历每个节点的邻居,合计算,属于基础遍历的应用。 此外,用户可能需要更直接的邻接表构建和遍历,例如: - **P1991 无线通讯网**:最小生成树,但可能需要Kruskal或Prim算法,可能不属于基础DFS/BFS。 - **P3371 【模板】单源最短路径(弱化版)**:Dijkstra或SPFA,属于最短路径算法,可能超出基础遍历范围。 回到用户需求,重点在于类似P5318和P3916,即明确使用邻接表,进行基础的DFS/BFS,可能涉及排序、反向建图等技巧,但不涉及多源BFS或Tarjan。 可能的合适题目: 1. **P2921 [USACO08DEC]Trick or Treat on the Farm**:每个节点只有一个出边,求每个点出发的环长度。可以使用DFS遍历每个节点,记录访问状态来检测环。需要构建邻接表,每个节点一个邻居,适合基础DFS应用。 2. **P2661 信息传递**:同样求最小环,可能需要DFS或BFS来检测环,但属于有向图,每个节点一个出边的情况,类似P2921,但更复杂一点。 3. **P1395 会议**:树的重心问题,需要遍历树结构计算各子树大小,使用邻接表存储树,属于基础BFS/DFS应用。 4. **P1351 联合权值**:树中节点对的联合权值计算,需要遍历每个节点的邻居,属于邻接表的应用,虽然问题特殊,但核心是遍历邻居。 5. **P1038 神经网络**:拓扑排序,使用邻接表和BFS进行拓扑排序,属于基础应用,但可能涉及简单的动态规划。 6. **P1807 最长路**:DAG上的最长路径,可以通过拓扑排序+BFS或DFS解决,需要邻接表存储图,属于基础遍历的扩展,但可能符合条件。 需要检查这些题目是否涉及用户排除的多源BFS或Tarjan。例如,P1038的拓扑排序属于BFS的应用,但不涉及多源;P2921和P2661的DFS环检测属于基础遍历。因此,这些题目可能符合用户需求。 总结推荐: - **P2921 [USACO08DEC] Trick or Treat on the Farm**:基础DFS,邻接表存储每个节点的单一出边,检测环的长度。 - **P2661 信息传递**:类似,求最小环,DFS/BFS应用。 - **P1395 会议**:树结构遍历,计算重心,邻接表存储树。 - **P1351 联合权值**:遍历邻接表中的邻居节点,合计算权值。 - **P1038 神经网络**:拓扑排序+BFS,邻接表存储有向图,无复杂算法。 需要确保这些题目不涉及用户排除的点。例如,P1038中的拓扑排序属于BFS的基础应用,不是多源;P2661的环检测是基础DFS。因此,这些是合适的推荐。 同时,可能需要提供每题的简介和考察点,帮助用户理解是否符合他们的需求。例如,强调邻接表的构建、基础遍历的应用,以及可能的排序或反向处理技巧,类似P5318和P3916。</think>以下是结合图论中的邻接表实现 **DFS/BFS** 的练习题推荐,题目风格与 **P5318** 和 **P3916** 类似,不涉及多源 BFS、Tarjan 等复杂算法,专注于邻接表构建与基础遍历的应用: --- ### **一、基础遍历与邻接表操作** 1. **题目编号:P2921 [USACO08DEC] Trick or Treat on the Farm** - **标签**:邻接表、DFS、环检测 - **简介**:每个节点有且仅有一条出边,求每个节点出发能走的路径长度(最终形成环)。 - **考察点**: - 邻接表的构建(每个节点一个出边)。 - 通过 DFS 或 BFS 遍历路径,记录已访问节点以检测环。 - **关键思路**: - 对每个未访问的节点启动遍历,记录路径长度,直到遇到已访问节点(形成环或连接已有路径)。 --- 2. **题目编号:P2661 信息传递** - **标签**:邻接表、DFS/BFS、最小环 - **简介**:找到有向图中的最小环(所有节点出度为1)。 - **考察点**: - 邻接表的构建(类似链式结构)。 - 通过 DFS 标记访问时间戳,检测环并计算长度。 --- ### **二、树结构与遍历应用** 3. **题目编号:P1395 会议** - **标签**:邻接表、树的重心、DFS/BFS - **简介**:在树中找到重心(删除后剩余最大子树最小的节点),并计算重心到所有节点的距离和。 - **考察点**: - 邻接表存储树结构(无向图需双向建边)。 - 两次 DFS/BFS:第一次计算子树大小,第二次计算距离和。 --- 4. **题目编号:P1351 联合权值** - **标签**:邻接表、DFS、合计算 - **简介**:在无向树中,计算所有距离为2的节点对的权值乘积之和与最大值。 - **考察点**: - 邻接表遍历每个节点的邻居。 - 对每个节点的邻居两两合,避免重复计算。 --- ### **三、拓扑排序与动态规划** 5. **题目编号:P1038 神经网络** - **标签**:邻接表、拓扑排序、BFS - **简介**:根据神经网络的传递规则(带阈值和权重),计算最终活跃的神经元。 - **考察点**: - 邻接表存储有向图的边和权重。 - 拓扑排序 + BFS 动态更新节点状态。 --- ### **四、路径搜索与条件过滤** 6. **题目编号:P2296 [NOIP2014 提高] 寻找道路** - **标签**:邻接表、反向建图、BFS - **简介**:找到从起点到终点的路径,且路径上所有节点的邻居都能到达终点。 - **考察点**: - 反向建图预处理有效节点。 - 正向 BFS 搜索最短路径(需结合条件过滤)。 --- ### **五、邻接表遍历模板** **DFS/BFS 核心代码(C++)**: ```cpp vector<int> adj[N]; // 邻接表 bool visited[N]; // DFS 递归模板 void dfs(int u) { visited[u] = true; for (int v : adj[u]) { if (!visited[v]) dfs(v); } } // BFS 队列模板 void bfs(int start) { queue<int> q; q.push(start); visited[start] = true; while (!q.empty()) { int u = q.front(); q.pop(); for (int v : adj[u]) { if (!visited[v]) { visited[v] = true; q.push(v); } } } } ``` --- ### **练习建议** 1. **从简单模型入手**:如 P2921 和 P2661,通过简单的环检测问题熟悉邻接表遍历的细节。 2. **注意树的特性**:树是特殊的无环图,遍历时可利用递归特性(如 P1395 的子树计算)。 3. **灵活应用反向建图**:在需要“逆向思维”的题目中(如 P2296),反向建图能简化条件过滤。 如果需要具体题解或代码实现细节,可以告诉我题号,我会提供更深入的分析!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值