在刚过去的春节,DeepSeek作为AI 领域的一匹黑马,凭借独特技术优势与创新设计火爆出圈,成为众多技术爱好者和大众热议的焦点,本文将作为对DeepSeek的初步学习简单总结,了解一下DeepSeek到底有哪些优势和技术创新?
DeepSeek R1:专注推理,精益求精
DeepSeek R1 基于 V3 的基础架构,专注于推理任务,通过强化学习(RL)实现了推理能力的显著提升,具备以下技术亮点:
1)强化学习驱动的推理:R1 通过纯强化学习训练(无需监督微调),展现出自我验证、反思以及生成长思维链(CoT)的强大能力。这种训练方式不仅显著降低了训练成本,还在复杂任务中表现出色。在数学、代码以及自然语言推理任务中,R1 的表现与 OpenAI o1 不相上下,甚至在 AIME 2024 和 MATH - 500 等基准测试中实现超越。
2)模型蒸馏与小型化,应用拓展:R1 具备将推理能力蒸馏到更小模型中的独特能力,经蒸馏后的小模型在多个基准测试中成绩斐然,甚至超越原始模型。这一特性使得 R1 的推理模式能够无缝迁移到资源有限的设备上,为本地部署和应用提供了极大便利。
3)开源与灵活性:R1 同样完全开源,遵循 MIT 协议,支持免费商用与定制化开发。其 API 与 OpenAI 格式兼容,方便开发者快速集成。此外,R1 拥有 128K tokens 的长上下文支持,在处理复杂任务时优势尽显。
DeepSeek V3:高性能与低成本的完美结合
DeepSeek V3 作为一款基于混合专家(MoE)架构的大型语言模型,以其 6710 亿的庞大参数规模,却在每次推理时仅激活 370 亿参数,巧妙地实现了计算成本的显著降低,其技术优势:
1)高性能与低成本:在诸多基准测试中,DeepSeek V3 大放异彩,表现直逼甚至超越 Claude Sonnet 和 GPT - 4o 等国际顶级模型。尤其在数学竞赛(如 AIME 2024 和 MATH - 500)以及代码生成任务(如 Codeforces)中,V3 的卓越性能展露无遗。令人惊叹的是,它仅耗费 557 万美元的训练成本,与 GPT - 4o 的 1 亿美元相比,可谓天壤之别。不仅如此,其推理成本同样极具竞争力,每百万 tokens 的输入 / 输出成本仅为 Sonnet - 3.5 的十分之一。
2)稀疏的混合专家架构:V3 采用稀疏的混合专家架构,每次推理仅激活 5% - 10% 的少量参数,大幅削减了计算量与显存占用。值得一提的是,V3 在大规模模型上首次成功验证了 FP8 训练的可行性,这一创举不仅进一步降低了训练成本,还显著提升了计算效率。
3)开源与本地化共享:V3 秉持开源精神,完全开源且支持本地部署,用户能够依据自身需求定制模型,同时对数据隐私拥有绝对掌控权。其 API 服务价格亲民,输入 / 输出每百万 tokens 的成本分别为 2 元和 8 元,为中小企业和个人开发者提供了经济实惠的选择。
DeepSeek 的创新技术解密
1)MoE 架构(混合专家模型)
MoE(混合专家模型)将模型划分为多个专家模块,各负其责。训练时,不同专家模块可分配至不同计算设备,大幅提升训练效率。推理时,仅动态激活部分专家(370 亿参数),而非全模型的 6710 亿参数,有效减轻计算负担。针对 MoE 常面临的部分专家工作量不均问题,DeepSeek 创新性地通过无辅助损失的自然负载均衡以及共享专家机制加以解决,实现各专家模块工作量的平衡。
2)MLA:多头潜在注意力,优化内存占用
传统 Transformer 的注意力机制在长上下文场景下,需缓存完整的 Key - Value(KV)矩阵,导致内存占用急剧增加。DeepSeek - V3 的 MLA(多头潜在注意力)通过低秩联合压缩机制,将 KV 矩阵压缩为低维潜在向量,显著降低内存占用,为长上下文处理提供更高效的解决方案。
3)多 Token 预测:并行优化,提升效率
一般的 LLM 采用单步预测,每次仅生成 1 个 token。而 DeepSeek 在特定场景下能够同时预测多个 token,提高信号密度。这不仅减少了上下文漂移,使生成内容逻辑更连贯,还省略了一些重复中间步骤,在数学、代码和文本摘要等场景中大幅提升效率。
4)CoT:思维链,拓展推理深度
CoT(Chain of thought)作为一种训练和推理方法,将复杂问题拆解为小步中间逻辑,细化逻辑链条。在训练阶段,DeepSeek 利用标注的 Long CoT 数据对模型进行微调,促使模型生成更清晰的推理步骤。在强化学习中,借助 CoT 设计奖励优化,进一步增强长链推理能力。在此过程中,模型展现出反思(回溯推理路径)、多路径推理(给出多个解)以及 “aha 时刻”(通过策略突破瓶颈)等自发行为。
5)FP8 混合精度训练:降低成本,提升效能
通过 FP8 混合精度训练,DeepSeek - V3 成功将 GPU 内存占用减少 50%,训练成本降低至 2.788M GPU 小时,为大规模模型训练提供了更经济高效的途径。
学习资料:
《DeepSeek大模型性能、特点、生态及挑战的分析》https://zhuanlan.zhihu.com/p/20724502865
《DeepSeek-V3 技术报告深度解读》https://zhuanlan.zhihu.com/p/18650452526