适配器模式

原文地址:https://www.jianshu.com/p/fd417a917ed4

适配器模式就是把一个类或接口转换成其他的接口或类

类图如下

 

适配器模式类图

适配器模式分成两种一种是类适配,通过继承的方式,一种是对象适配,通过组合的方式

类适配

假设我们现在有自己的一个运行系统,由用户信息接口

public interface UserInfo {
    String getName();
    String getAge();

    String getAddress();

    String getIDNumber();
}

实现类

public class StaffIn implements UserInfo{

    @Override
    public String getName() {
        return "张三";
    }

    @Override
    public String getAge() {
        return "16";
    }

    @Override
    public String getAddress() {
        return "北京市";
    }

    @Override
    public String getIDNumber() {
        return "10000";
    }
}

现在需要跟另一个系统对接,他们的用户类定义跟我们的完全不同
用户接口

public interface BaseUserInfo {
    Map<String,String> getBaseInfo();
    Map<String,String> getAddressInfo();
    Map<String,String> getIdInfo();
}

实现类

public class OtherUser implements BaseUserInfo {
    @Override
    public Map<String, String> getBaseInfo() {
        Map<String,String> map = new HashMap<>();
        map.put("name","zhangsan");
        map.put("age","20");
        return map;
    }

    @Override
    public Map<String, String> getAddressInfo() {
        Map<String,String> map = new HashMap<>();
        map.put("address","shanghai");
        return map;
    }

    @Override
    public Map<String, String> getIdInfo() {
        Map<String,String> map = new HashMap<>();
        map.put("id","3000");
        return map;
    }
}

这种情况要对接到我们的系统,满足我们的接口,代码如下

public class StaffOut extends OtherUser implements UserInfo{
    @Override
    public String getName() {
        return super.getBaseInfo().get("name");
    }

    @Override
    public String getAge() {
        return super.getBaseInfo().get("age");
    }

    @Override
    public String getAddress() {
        return super.getAddressInfo().get("address");
    }

    @Override
    public String getIDNumber() {
        return super.getIdInfo().get("id");
    }
}

这样在调用的时候我们只需要修改一行代码就能满足需求

public class Main {
    public static void main(String[] args){
//        UserInfo info = new StaffIn();
        UserInfo info = new StaffOut();
        System.out.println("员工姓名:" +info.getName() );
        System.out.println("员工年龄:" +info.getAge() );
        System.out.println("员工地址:" +info.getAddress() );
        System.out.println("员工身份证号:" +info.getIDNumber() );
    }
}

对象适配

对接对象不是一个了,而是多个,显然继承的方式是不可以了,这就需要组合的方式。
对接的类如下

public class PsersonInfo {
    public String getName(){
        return "lisi";
    }

    public String getAge(){
        return "30";
    }
}

public class AddressInfo {
    public String getAddress(){
        return "南京";
    }
}

public class IDInfo {
    public String getID(){
        return "4000";
    }
}

核心的适配代码

public class StaffOut2 implements UserInfo{

    private PsersonInfo psersonInfo;
    private AddressInfo addressInfo;
    private IDInfo idInfo;

    public StaffOut2(PsersonInfo psersonInfo,AddressInfo addressInfo,IDInfo idInfo){
        this.psersonInfo = psersonInfo;
        this.addressInfo = addressInfo;
        this.idInfo = idInfo;
    }


    @Override
    public String getName() {
        return this.psersonInfo.getName();
    }

    @Override
    public String getAge() {
        return this.psersonInfo.getAge();
    }

    @Override
    public String getAddress() {
        return this.addressInfo.getAddress();
    }

    @Override
    public String getIDNumber() {
        return this.idInfo.getID();
    }
}

我们通过构造函数将需要的类注入到适配的类中,在调用时分别调用实际需要调用的类

public class Main {
    public static void main(String[] args){
        PsersonInfo psersonInfo = new PsersonInfo();
        AddressInfo addressInfo = new AddressInfo();
        IDInfo idInfo = new IDInfo();
        UserInfo info = new StaffOut2(psersonInfo,addressInfo,idInfo);
        System.out.println("员工姓名:" +info.getName() );
        System.out.println("员工年龄:" +info.getAge() );
        System.out.println("员工地址:" +info.getAddress() );
        System.out.println("员工身份证号:" +info.getIDNumber() );
    }
}
内容概要:本文介绍了ENVI Deep Learning V1.0的操作教程,重点讲解了如何利用ENVI软件进行深度学习模型的训练与应用,以实现遥感图像中特定目标(如集装箱)的自动提取。教程涵盖了从数据准备、标签图像创建、模型初始化与训练,到执行分类及结果优化的完整流程,并介绍了精度评价与通过ENVI Modeler实现一键化建模的方法。系统基于TensorFlow框架,采用ENVINet5(U-Net变体)架构,支持通过点、线、面ROI或分类图生成标签数据,适用于多/高光谱影像的单一类别特征提取。; 适合人群:具备遥感图像处理基础,熟悉ENVI软件操作,从事地理信息、测绘、环境监测等相关领域的技术人员或研究人员,尤其是希望将深度学习技术应用于遥感目标识别的初学者与实践者。; 使用场景及目标:①在遥感影像中自动识别和提取特定地物目标(如车辆、建筑、道路、集装箱等);②掌握ENVI环境下深度学习模型的训练流程与关键参数设置(如Patch Size、Epochs、Class Weight等);③通过模型调优与结果反馈提升分类精度,实现高效自动化信息提取。; 阅读建议:建议结合实际遥感项目边学边练,重点关注标签数据制作、模型参数配置与结果后处理环节,充分利用ENVI Modeler进行自动化建模与参数优化,同时注意软硬件环境(特别是NVIDIA GPU)的配置要求以保障训练效率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值