【图深度自监督学习Philips S. Yu团队重磅新作】Graph Self-Supervised Learning: A Survey

Graph Self-Supervised Learning: A Survey

作者:Philip S. Yu等

主要工作:
  • 对图自监督学习进行归类
  • 总结了已有的图自监督学习的工作
  • 提出了对后续的图自监督学习工作方向的展望
  • 相较于已有的图自监督学习综述,他们的工作对这块分得更科学更细致

Introduction 部分

​ 自监督学习是一个正在快速发展的用于解决(半)监督学习的缺点的学习范式。通过训练模型解决精心设计的中间任务,自监督学习可以帮助模型从未标记的数据中学习到更泛化的表示,以此在下游任务上达到更好的性能和泛化表现。

背景知识

  1. 图的背景知识:

    • 点集、边集、邻接矩阵
    • 有属性图与无属性图
    • 时空图
    • 同质图与异质图
  2. 下游的图分析任务

    • 节点级任务
      • 节点分类
    • 链接级任务
      • 链接预测:预测两个节点间是否产生链接
    • 图级别任务
      • 图分类:预测出属性
  3. 图神经网络

    • a ⃗ i ( k ) = A G G R E G A T E ( k ) ( { h ⃗ j ( k − 1 ) : v j ∈ N ( v i ) } ) , h ⃗ i ( k ) = C O M B I N E ( k ) ( h ⃗ i ( k − 1 ) , a ⃗ i ( k ) \vec a_i^{(k)}=\mathtt{AGGREGATE}^{(k)}(\{\vec h_j^{(k-1)}:v_j\in N(v_i)\}),\\ \vec h_i^{(k)}=\mathtt{COMBINE}^{(k)}(\vec h_i^{(k-1)},\vec a_i^{(k}) a i(k

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>