Graph Self-Supervised Learning: A Survey
作者:Philip S. Yu等
主要工作:
- 对图自监督学习进行归类
- 总结了已有的图自监督学习的工作
- 提出了对后续的图自监督学习工作方向的展望
- 相较于已有的图自监督学习综述,他们的工作对这块分得更科学更细致
Introduction 部分
自监督学习是一个正在快速发展的用于解决(半)监督学习的缺点的学习范式。通过训练模型解决精心设计的中间任务,自监督学习可以帮助模型从未标记的数据中学习到更泛化的表示,以此在下游任务上达到更好的性能和泛化表现。
背景知识
-
图的背景知识:
- 点集、边集、邻接矩阵
- 有属性图与无属性图
- 时空图
- 同质图与异质图
-
下游的图分析任务
- 节点级任务
- 节点分类
- 链接级任务
- 链接预测:预测两个节点间是否产生链接
- 图级别任务
- 图分类:预测出属性
- 节点级任务
-
图神经网络
-
a ⃗ i ( k ) = A G G R E G A T E ( k ) ( { h ⃗ j ( k − 1 ) : v j ∈ N ( v i ) } ) , h ⃗ i ( k ) = C O M B I N E ( k ) ( h ⃗ i ( k − 1 ) , a ⃗ i ( k ) \vec a_i^{(k)}=\mathtt{AGGREGATE}^{(k)}(\{\vec h_j^{(k-1)}:v_j\in N(v_i)\}),\\ \vec h_i^{(k)}=\mathtt{COMBINE}^{(k)}(\vec h_i^{(k-1)},\vec a_i^{(k}) ai(k
-

最低0.47元/天 解锁文章

被折叠的 条评论
为什么被折叠?



