[深度学习] 搭建行人重识别系统心得

普通的行人reid,分为特征提取和向量检索两大部分。其他一些商用技术是普通项目接触不到,大概用这两部分,再搜集数据,换换检测模型,提高reid模型就可以了。

1 特征提取

对于特征提取,通常步骤如下:

  1. 目标检测
    目标检测提取图像中的行人,一般会使用输入图像尺寸较大的yolo模型。
  2. 目标跟踪
    仅仅使用目标检测往往会出现目标检测框不稳定的情况。所以会利用目标跟踪算法,跟踪行人以稳定行人识别结果。现有常用的reid目标跟踪算法有deepsort,bytetrack,oc-sort。这些目标跟踪算法分为两种情况:
    • deepsort:这类算法会根据目标检测模型的行人检测框和其对应的行人图像特征来实现行人跟踪,这类算法会有一定的耗时而且需要计算对应的行人图像特征。
    • bytetrack/oc-sort:这两种算法直接根据目标检测模型的行人检测框来完成行人的多目标跟踪,所以对目标检测算法的精度要求较高。使用这类算法,再送入向量检索之前还需要提取行人特征。
  3. 规则过滤
    目标跟踪后会通过一些规则过滤行人,或者采用多镜头行人融合技术降低误报率。这一部分可有可无,看各家的技术。

目标检测很耗时,通过会每隔几帧进行检测。没有目标检测的中间帧,则使用上一帧的结果进行目标跟踪即可。行人特征提取开源的项目常用的demo有:

  • PP-Human,这个项目提供reid的一键式特征提取方案,缺点是paddle的东西不稳定,而且代码修改难度很大。

  • Yolov5-Deepsort-Fastreid,这个项目通过yolov5识别行人,deepsort基于fastreid特征提取结果进行目标跟踪。这个项目较老,可以参考该项目搭建自己的特征提取项目。

  • ByteTrackByteTrack_ReIDOC-SORT。如果追求检测速度,可以看看这三个项目。

2 向量检索

向量检索会涉及到很多东西,出库入库检索之类的。底库特别大会严重影响检索性能。不要自己写检索系统,用成熟的向量检索系统非常好,一方面可以方便管理,另外一方面可以加快检索速度。推荐两个:

  1. milvus,milvus是一个很完备的向量搜索引擎,能无脑搭建向量检索库,支持分布式处理,而且检索速度极快。缺点是,东西太多过于臃肿,搭建也不容易。可以照着milvus官方提供的以图搜图系统案例,搭建自己的行人向量检索系统。
  2. faiss,faiss是一个底层的向量检索库,提供一些基础的功能,但是得费点时间搭建向量检索库。不会用的话可以看看向量检索库Faiss使用指北

向量检索库涉及很多内容,多看看官方文档。无脑就用milvus,想自己弄或者要求不多就用faiss。

Transformer REID是指在人物重识别(Person Re-Identification,简称ReID)领域中使用Transformer模型进行特征提取和匹配的方法。Transformer是一种基于自注意力机制的神经网络模型,它在自然语言处理领域取得了巨大成功,近年来也被应用于计算机视觉任务中,包括人物重识别。 在Transformer REID中,通过将图像输入Transformer模型,将图像的特征嵌入到一个高维向量空间中。这个向量表示了图像中的人物特征,例如外貌、姿态等。通过计算不同图像之间的向量距离,可以进行人物的匹配和检索。 Transformer REID的优势在于能够捕捉到图像中的全局关系和上下文信息,从而提高人物重识别的准确性和鲁棒性。通过利用Transformer模型的自注意力机制,可以有效地建模图像中的长距离依赖关系,并且能够自适应地学习不同特征之间的关联。 参考文献: TransReID Transformer在ReID领域的第一次全面探索!为更好的利用ReID的数据特性与Transformer的信息嵌入特征,本文提出了两种模块改进SIE与JPM,将ReID的提升到了新的高度。 后台回复:Transformer综述,即可下载两个最新的视觉Transformer综述PDF,肝起来!<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [Transformer再下一城!ReID各项任务全面领先,阿里&浙大提出TransReID](https://blog.csdn.net/amusi1994/article/details/113787801)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值