多维变量线性回归

多维变量线性回归


x ( i ) {x^{\left( i \right)}} x(i)代表第 i i i 个训练实例,是特征矩阵中的第 i i i行,是一个向量

x j ( i ) {x}_{j}^{\left( i \right)} xj(i)代表特征矩阵中第 i i i 行的第 j j j 个特征,也就是第 i i i 个训练实例的第 j j j 个特征。


多变量线性回归函数

支持多变量的假设 h h h 表示为: h θ ( x ) = θ 0 + θ 1 x 1 + θ 2 x 2 + . . . + θ n x n h_{\theta}\left( x \right)={\theta_{0}}+{\theta_{1}}{x_{1}}+{\theta_{2}}{x_{2}}+...+{\theta_{n}}{x_{n}} hθ(x)=θ0+θ1x1+θ2x2+...+θnxn

这个公式中有 n + 1 n+1 n+1个参数和 n n n个变量,为了使得公式能够简化一些,引入 x 0 = 1 x_{0}=1 x0=1,则公式转化为: h θ ( x ) = θ 0 x 0 + θ 1 x 1 + θ 2 x 2 + . . . + θ n x n h_{\theta} \left( x \right)={\theta_{0}}{x_{0}}+{\theta_{1}}{x_{1}}+{\theta_{2}}{x_{2}}+...+{\theta_{n}}{x_{n}} hθ(x)=θ0x0+θ1x1+θ2x2+...+θnxn

此时模型中的参数是一个 n + 1 n+1 n+1维的向量,任何一个训练实例也都是 n + 1 n+1 n+1维的向量,特征矩阵 X X X的维度是 m ∗ ( n + 1 ) m*(n+1) m(n+1)。 因此公式可以简化为: h θ ( x ) = θ T X h_{\theta} \left( x \right)={\theta^{T}}X hθ(x)=θTX

在这里插入图片描述


多变量梯度下降

多变量回归代价函数 J ( θ 0 , θ 1 . . . θ n ) = 1 2 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) 2 J\left( {\theta_{0}},{\theta_{1}}...{\theta_{n}} \right)=\frac{1}{2m}\sum\limits_{i=1}^{m}{{{\left( h_{\theta} \left({x}^{\left( i \right)} \right)-{y}^{\left( i \right)} \right)}^{2}}} J(θ0,θ1...θn)=2m1i=1m(hθ(x(i))y(i))2

多变量线性回归的批量梯度下降算法为:

在这里插入图片描述

即:

在这里插入图片描述

求导后得到:

在这里插入图片描述

n > = 1 n>=1 n>=1时,
θ 0 : = θ 0 − a 1 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) x 0 ( i ) {{\theta }_{0}}:={{\theta }_{0}}-a\frac{1}{m}\sum\limits_{i=1}^{m}{({{h}_{\theta }}({{x}^{(i)}})-{{y}^{(i)}})}x_{0}^{(i)} θ0:=θ0am1i=1m(hθ(x(i))y(i))x0(i)

θ 1 : = θ 1 − a 1 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) x 1 ( i ) {{\theta }_{1}}:={{\theta }_{1}}-a\frac{1}{m}\sum\limits_{i=1}^{m}{({{h}_{\theta }}({{x}^{(i)}})-{{y}^{(i)}})}x_{1}^{(i)} θ1:=θ1am1i=1m(hθ(x(i))y(i))x1(i)

θ 2 : = θ 2 − a 1 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) x 2 ( i ) {{\theta }_{2}}:={{\theta }_{2}}-a\frac{1}{m}\sum\limits_{i=1}^{m}{({{h}_{\theta }}({{x}^{(i)}})-{{y}^{(i)}})}x_{2}^{(i)} θ2:=θ2am1i=1m(hθ(x(i))y(i))x2(i)


特征缩放

如果不进行特征缩放,则如图所示梯度下降算法需要多次迭代才可以收敛,比较复杂。

在这里插入图片描述

解决的方法是尝试将所有特征的尺度都尽量缩放到-1到1之间。如图:

在这里插入图片描述

缩放原则和方法

  • − 1 < x n < 1 {{-1}<{{x}_{n}<{1}}} 1<xn<1
  • − 3 < x n < 3 {{-3}<{{x}_{n}<{3}}} 3<xn<3或者 − 1 3 < x n < 1 3 {{-\frac{1}{3}}<{{x}_{n}}<{\frac{1}{3}}} 31<xn<31都是可以的
  • 最简单的方法是令: x n = x n − μ n s n {{x}_{n}}=\frac{{{x}_{n}}-{{\mu}_{n}}}{{{s}_{n}}} xn=snxnμn,其中 μ n {\mu_{n}} μn x n {{x}_{n}} xn的平均值, s n {s_{n}} sn x m a x − x m i n {{x}_{max}}-{{x}_{min}} xmaxxmin的值**

学习率

绘制迭代次数( x {x} x 轴)和代价函数( y {y} y 轴)的图表来观测算法在何时趋于收敛,如下图

在这里插入图片描述

出现下面两种情况都是因为学习率 α \alpha α 过大,应该调低学习率。

在这里插入图片描述

在这里插入图片描述

总结:

梯度下降算法的每次迭代受到学习率的影响,如果学习率 α \alpha α 过小,则达到收敛所需的迭代次数会非常多;如果学习率 α \alpha α 过大,每次迭代可能不会减小代价函数,可能会越过局部最小值导致无法收敛。

通常可以考虑尝试这些学习率:
α = 0.01 , 0.03 , 0.1 , 0.3 , 1 , 3 , 10 \alpha=0.01,0.03,0.1,0.3,1,3,10 α=0.010.030.10.31310


正规方程

在数学中计算函数最小值通常先计算导数为0的点,即:
d d θ j ( θ ) = 0 \frac{\mathrm{d}}{\mathrm{d}{\theta}}j\left( {\theta} \right)=0 dθdj(θ)=0
同样,也可以通过求偏导数来找出代价函数 J ( θ j ) {J\left( {\theta_{j}} \right)} J(θj) 最小的参数,即:
∂ ∂ θ j J ( θ j ) = 0 \frac{\partial}{\partial{\theta_{j}}}J\left( {\theta_{j}} \right)=0 θjJ(θj)=0
在这里插入图片描述

假设训练集特征矩阵为 X X X(其中 x 0 = 1 {{x}_{0}}=1 x0=1)并且我们的训练集结果为向量 y y y,则利用正规方程解出向量
θ = ( X T X ) − 1 X T y \theta ={{\left( {X^T}X \right)}^{-1}}{X^{T}}y θ=(XTX)1XTy
在这里插入图片描述

梯度下降与正规方程比较

梯度下降正规方程
特征数量大于一百万则必定使用梯度下降适用于特征数量较小的(通常适用于特征数量小于10000)
多次迭代一次算出
适用于各种模型只适用于线性模型

正规方程的python实现:

import numpy as np
    
 def normalEqn(X, y):
    
   theta = np.linalg.inv(X.T@X)@X.T@y 
    
   return theta

正规方程中矩阵不可逆

  • 当两个特征线性相关时,则 X T X { {X^T}X} XTX 不可逆
  • 当训练样本数量小于等于特征数量时,则 X T X { {X^T}X} XTX 不可逆
  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
多维线性回归是指在有多个自变量的情况下,使用线性模型来拟合数据。在PyTorch中,我们可以使用神经网络来实现多维线性回归。 首先,我们需要导入必要的库和模块: ```python import torch import torch.nn as nn import torch.optim as optim ``` 接下来,我们定义一个多维线性回归模型。模型将输入的自变量进行线性变换,并输出预测值。 ```python class LinearRegression(nn.Module): def __init__(self, input_size, output_size): super(LinearRegression, self).__init__() self.linear = nn.Linear(input_size, output_size) def forward(self, x): out = self.linear(x) return out ``` 然后,我们定义训练函数,用于训练模型。 ```python def train(model, inputs, labels, num_epochs, learning_rate): criterion = nn.MSELoss() optimizer = optim.SGD(model.parameters(), lr=learning_rate) for epoch in range(num_epochs): inputs = torch.Tensor(inputs) labels = torch.Tensor(labels) optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() if (epoch+1) % 100 == 0: print('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, loss.item())) ``` 最后,我们可以使用定义好的模型和训练函数进行训练和预测。 ```python # 训练数据 inputs = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] labels = [3, 6, 9] # 创建模型 model = LinearRegression(input_size=3, output_size=1) # 训练模型 train(model, inputs, labels, num_epochs=1000, learning_rate=0.001) # 预测数据 test_input = torch.Tensor([[2, 3, 4]]) predicted_output = model(test_input) print('Predicted Output:', predicted_output.item()) ``` 以上代码演示了如何使用PyTorch实现多维线性回归。希望能对你有所帮助!

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值