最短路径问题
描述
平面上有n个点(n≤100),每个点的坐标均在-10000~10000之间。其中的一些点之间有连线。若有连线,则表示可从一个点到达另一个点,即两点间有通路,通路的距离为两点间的直线距离。现在的任务是找出从一点到另一点之间的最短路径。
输入
共n+m+3行,其中:第一行为整数n。第2行到第n+1行(共n行) ,每行两个整数x和y,描述了一个点的坐标。第n+2行为一个整数m,表示图中连线的个数。此后的m 行,每行描述一条连线,由两个整数i和j组成,表示第i个点和第j个点之间有连线。最后一行:两个整数s和t,分别表示源点和目标点。
输出
一行,一个实数(保留两位小数),表示从s到t的最短路径长度。
输入样例 1
5 0 0 2 0 2 2 0 2 3 1 5 1 2 1 3 1 4 2 5 3 5 1 5
输出样例 1
3.41
#include <iostream>
#include <iomanip>
#include <cmath>
#include <vector>
using namespace std;
struct Point {
int x, y;
};
double distance(const Point& a, const Point& b) {
return sqrt(pow(a.x - b.x, 2) + pow(a.y - b.y, 2));
}
int main() {
int n, m, s, t;
cin >> n;
vector<Point> points(n);
for (int i = 0; i < n; ++i) {
cin >> points[i].x >> points[i].y;
}
cin >> m;
vector<vector<double>> graph(n, vector<double>(n, 1e9));
for (int i = 0; i < n; ++i) {
graph[i][i] = 0; // Distance to self is 0
}
for (int i = 0; i < m; ++i) {
int u, v;
cin >> u >> v;
--u;
--v;
graph[u][v] = graph[v][u] = distance(points[u], points[v]);
}
cin >> s >> t;
--s;
--t;
for (int k = 0; k < n; ++k) {
for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {
if (graph[i][k] + graph[k][j] < graph[i][j]) {
graph[i][j] = graph[i][k] + graph[k][j];
}
}
}
}
cout << fixed << setprecision(2);
cout << graph[s][t] << endl;
return 0;
}

3578

被折叠的 条评论
为什么被折叠?



