例1.表达式SSS表示一个圆心在原点,半径为5的圆,其隐函数如下:
S(x,y)=x2+y2=25
S(x,y)=x^2+y^2 = 25
S(x,y)=x2+y2=25
对表达式SSS求导,要考虑SSS的两个变量x,yx,yx,y同时发生的变化,既有xxx的微小变化量dxdxdx,也有yyy的微小变化量dydydy。无论这个变化是否在某个圆上,都会在xyxyxy平面上往某种方向移动了微小的一步。

对SSS求导,则有
dS=2xdx+2ydy=0
dS=2xdx+2ydy=0
dS=2xdx+2ydy=0
几何意义:对SSS求导,就是在求这次移动所导致的SSS的变化量dSdSdS是多少,即x2+y2x^2+y^2x2+y2的值相应变化了多少。对于求导而言,虽然是个近似值,但是这个近似值会随着dx,dydx,dydx,dy越来越小而越来越精确。
重点在于,当把每一次移动都落在圆上的时候,就相当于维持SSS的值不变,则SSS的变化量dSdSdS就应该为0(严格意义上来讲,这样约束会使得每一步落在圆的一条切线上,但迈的步子足够小的话,可以近似等同于落在圆上)。
例2.已知的f(x)=exf(x)=e^xf(x)=ex的导函数为其本身,即d(ex)dx=ex\frac{d(e^x)}{dx}=e^xdxd(ex)=ex,求其反函数f(x)=ln(x)f(x)=\ln(x)f(x)=ln(x)的导函数
将ln(x)\ln(x)ln(x)的图像想象成一个隐函数曲线,该曲线表示xyxyxy平面上满足等式y=ln(x)y=\ln(x)y=ln(x)的所有点(x,y)(x,y)(x,y)的集合。

函数图像的切线的斜率dydx\frac{dy}{dx}dxdy就是ln(x)\ln(x)ln(x)的导函数。
其中,
y=ln(x)y=\ln(x)y=ln(x) 等价于 ey=xe^y=xey=x
对等式两边同时求导有
eydy=dxe^ydy=dxeydy=dx
几何意义:从图像上移动微小的一步(dx,dy)(dx,dy)(dx,dy),对等式的两边有什么影响。要让这一步依然落在曲线上,等式左边的变化量 eydye^ydyeydy 必须等于等式右边的变化量 dxdxdx。
则ln(x)\ln(x)ln(x)的导函数为
dydx=1ey=1x\frac{dy}{dx}=\frac{1}{e^y}=\frac{1}{x}dxdy=ey1=x1
从本例子可以看出,隐函数求导的一个作用是可以利用从已有的导函数,推导出别的函数的导函数。
2096

被折叠的 条评论
为什么被折叠?



