MCAC_123
码龄2年
关注
提问 私信
  • 博客:5,273
    5,273
    总访问量
  • 7
    原创
  • 153,574
    排名
  • 72
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:陕西省
  • 加入CSDN时间: 2023-04-14
博客简介:

MCAC_123的博客

查看详细资料
  • 原力等级
    当前等级
    1
    当前总分
    68
    当月
    0
个人成就
  • 获得100次点赞
  • 内容获得1次评论
  • 获得68次收藏
创作历程
  • 7篇
    2024年
成就勋章
创作活动更多

2024 博客之星年度评选报名已开启

博主的专属年度盛宴,一年仅有一次!MAC mini、大疆无人机、华为手表等精美奖品等你来拿!

去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

Datawhale X 魔搭 AI夏令营 AIGC Task02

定义了一个自定义的Dataset类,用于封装数据加载逻辑,并使用DataLoader进行批量加载。# ...(CustomDataset类的定义)# ...(模型预测的代码)生成的连环画图片栩栩如生,但是细节方面不够完美,期待Task03的baseline02。使得生成的图像完美又生动。
原创
发布博客 2024.08.14 ·
340 阅读 ·
7 点赞 ·
0 评论 ·
4 收藏

Datawhale Al夏令营 大模型(微调)Task02

我们在保持训练代数为10,学习率为0.00008,由上1表可知,改进的prompt对于大模型的得分是有改进的。调节出这个得分60.5的prompt后,我停止了对prompt的改进,接着来扩充数据。由于是高考出题,我选择的是2023年与2019年的高考全国范围的语文与英语试卷,来扩充数据集。第三步,将增加好的训练集上传到云端,加上最好的prompt生成最新的output文件。(6)分析作者在文中表达的情感态度,包括其对主题的喜好、厌恶、赞赏或批评等。(8)基于文中的论点和论据,推断作者写作本文的主要意图。
原创
发布博客 2024.08.14 ·
694 阅读 ·
11 点赞 ·
0 评论 ·
17 收藏

Datawhale AI夏令营 大模型(微调)Task01

通过昨天晚上的讲解学习到,提升本次大模型得分的关键在于改进prompt和扩充数据和数据增强。这里就很伤心,看群里的同学按照教程做出来的成绩是70多,说也没有改任何参数,就能得到,而且每个人运行后的得分都不一样。不知道为啥差距好大。(7)考虑文中提到的文化元素或背景,讨论这些元素如何影响作者的观点和论证。下表2为运行的两个可改变的参数学习率和训练参数改变后的得分对比。由上表可知,本次的大模型,增大训练次数与改变学习率,没有大的成绩提高。去提高程序预测准确性,所以这次对大模型的训练的难点在与大模型所需的。
原创
发布博客 2024.08.11 ·
928 阅读 ·
19 点赞 ·
0 评论 ·
14 收藏

Datawhale X 魔搭 AI夏令营第四期 Task01

以文生图是AIGC ( AI Generated Content )框架中的一个关键技术,通过文字描述,将文字转化为图像并展示出来。以文生图具有白动化程度高、精度高、可扩展性强、可定制化等优势,具有广泛的应用前景,可以为人们提供更便捷高效的绘图解决方案。
原创
发布博客 2024.08.09 ·
1073 阅读 ·
34 点赞 ·
0 评论 ·
9 收藏

Datawhale AI夏令营 第三期 Task03

对于数据集里的特征序列的处理,作为非数值的文本特征需要经过特殊的编码才能对特征进行处理,这是比较难的一部分。转眼又到了第三期结束了,这期的生物学难度挺大,涉及的专业很多,我的大多数时间不是在读懂baseline1和2的代码解读和帮助文档,就是在调参的路上。对于GC含量特征的处理,分享会的大佬说可以自己再加几条,我实在能力不允许加不进去。因为Task03里面的代码为给完全,所以这段代码的实现需要借助Task01里面对于GenomicTokenizer和GenomicVocab的定义需要加入进来。
原创
发布博客 2024.08.02 ·
946 阅读 ·
17 点赞 ·
0 评论 ·
6 收藏

Datawhal AI 夏令营第三期-- Task01

在本地部署的时候也是花了很大功夫,在基本的训练模型生成之后,接着去预测测试集这一部分对代码的调试是一个难点。下面是我自己添加的测试集预测的输出代码,比Datawhale给的要简略一点,但是功能是相同的。第二期是三特征输入的时序预测,这次是多特征输入的回归拟合预测。数据集的量减少了,但是本质是一样的,主要是回归拟合。我利用SVR预测后的结果要好于运行200epochs的baseline,为0.69左右,以下是我用的SVR的一种代码,和大家一起交流学习。这段代码是可以运行通的,大家可以试一试。
原创
发布博客 2024.07.27 ·
285 阅读 ·
4 点赞 ·
0 评论 ·
4 收藏

Datawhale AI 夏令营 Task03

接着,通过学习别人的笔记,通过对Task02中单一lightgbm的特征工程改进会提升运行结果的分数。后来观察到Task03中还提供了在数据建立特征工程后,通过三者堆叠融合后可输出结果,我又进行了尝试,本次代码运行耗时较长,且代码长度也比较长,可相对较好的是结果提交后有了不错的分数提升,分数从257.7来到了233.1。在这段程序中,我输出了三者融合后的结果,也输出了三者各自的预测的数值,分别的得分为260.3605、262.43793与259.9,相比来说相互融合的方式还是效果好一点。
原创
发布博客 2024.07.20 ·
1007 阅读 ·
8 点赞 ·
1 评论 ·
14 收藏