手把手教你学matlab(8.10)--实例: MATLAB 进行图像识别

目录

1. 图像分类

使用深度学习工具箱进行图像分类

2. 目标检测

使用计算机视觉工具箱进行目标检测

3. 特征匹配与图像检索

使用特征匹配进行相似图像查找


 

图像识别是计算机视觉的一个重要组成部分,它涉及到从图像中提取信息并对其进行分类或检测。下面,我将通过几个不同的场景来介绍如何使用 MATLAB 进行图像识别,包括基本的图像分类和目标检测。

1. 图像分类

使用深度学习工具箱进行图像分类

目标:使用预训练的深度学习模型对图像进行分类。

步骤

  1. 加载预训练模型

     
    matlab

    深色版本

    net = alexnet; % 加载 AlexNet 模型,也可以选择其他模型如 GoogLeNet, ResNet 等
  2. 读取图像

     
    matlab

    深色版本

    img = imread('peppers.png'); % 读取图像
  3. 预处理图像

     
    matlab

    深色版本

    inputSize = net.Layers(1).InputSize(1:2); % 获取输入层大小
    img = imresize(img, inputSize); % 调整图像大小以匹配网络输入
  4. 分类图像

     
    matlab

    深色版本

    label = classify(net, img);
  5. 显示结果

     
    matlab

    深色版本

    imshow(img);
    title(char(label));

2. 目标检测

使用计算机视觉工具箱进行目标检测

目标:检测图像中的特定对象,例如人脸或车辆。

步骤

  1. 加载预训练的目标检测器

     
    matlab

    深色版本

    detector = vision.FastRCNNObjectDetector('Vehicle'); % 加载用于检测车辆的 Faster R-CNN 检测器
  2. 读取图像

     
    matlab

    深色版本

    img = imread('street.png'); % 读取包含车辆的街道图像
  3. 执行目标检测

     
    matlab

    深色版本

    bboxes = detect(detector, img); % 检测目标边界框
    scores = bboxScores; % 获取检测分数
  4. 绘制结果

     
    matlab

    深色版本

    figure;
    imshow(img);
    hold on;
    for i = 1:length(bboxes)
        rectangle('Position', bboxes(i,:), 'LineWidth', 2, 'EdgeColor', 'g');
        text(bboxes(i,1), bboxes(i,2)-10, sprintf('%.2f', scores(i)), 'Color', 'r', 'FontSize', 14);
    end
    hold off;

3. 特征匹配与图像检索

使用特征匹配进行相似图像查找

目标:在数据库中查找与查询图像最相似的图像。

步骤

  1. 读取查询图像

     
    matlab

    深色版本

    queryImg = imread('query.jpg');
  2. 提取特征

     
    matlab

    深色版本

    points = detectSURFFeatures(queryImg);
    [features, validPoints] = extractFeatures(queryImg, points);
  3. 加载数据库图像并提取特征

     
    matlab

    深色版本

    databaseImgs = imageDatastore('path/to/database/images');
    for imgFile = databaseImgs.Files
        dbImg = readimage(databaseImgs, imgFile);
        dbPoints = detectSURFFeatures(dbImg);
        [dbFeatures, validDbPoints] = extractFeatures(dbImg, dbPoints);
        % 存储特征向量等信息
    end
  4. 匹配特征

     
    matlab

    深色版本

    indexPairs = matchFeatures(features, dbFeatures);
  5. 计算相似度评分并排序

     
    matlab

    深色版本

    % 计算基于匹配特征数量的评分,并按降序排列
  6. 显示最相似的图像

     
    matlab

    深色版本

    % 显示评分最高的几幅图像

以上是几个使用 MATLAB 进行图像识别的例子。这些例子展示了如何利用预训练模型和内置函数来快速实现图像分类、目标检测和图像检索等功能。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小蘑菇二号

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>