目录
图像识别是计算机视觉的一个重要组成部分,它涉及到从图像中提取信息并对其进行分类或检测。下面,我将通过几个不同的场景来介绍如何使用 MATLAB 进行图像识别,包括基本的图像分类和目标检测。
1. 图像分类
使用深度学习工具箱进行图像分类
目标:使用预训练的深度学习模型对图像进行分类。
步骤:
-
加载预训练模型:
matlab深色版本
net = alexnet; % 加载 AlexNet 模型,也可以选择其他模型如 GoogLeNet, ResNet 等 -
读取图像:
matlab深色版本
img = imread('peppers.png'); % 读取图像 -
预处理图像:
matlab深色版本
inputSize = net.Layers(1).InputSize(1:2); % 获取输入层大小 img = imresize(img, inputSize); % 调整图像大小以匹配网络输入 -
分类图像:
matlab深色版本
label = classify(net, img); -
显示结果:
matlab深色版本
imshow(img); title(char(label));
2. 目标检测
使用计算机视觉工具箱进行目标检测
目标:检测图像中的特定对象,例如人脸或车辆。
步骤:
-
加载预训练的目标检测器:
matlab深色版本
detector = vision.FastRCNNObjectDetector('Vehicle'); % 加载用于检测车辆的 Faster R-CNN 检测器 -
读取图像:
matlab深色版本
img = imread('street.png'); % 读取包含车辆的街道图像 -
执行目标检测:
matlab深色版本
bboxes = detect(detector, img); % 检测目标边界框 scores = bboxScores; % 获取检测分数 -
绘制结果:
matlab深色版本
figure; imshow(img); hold on; for i = 1:length(bboxes) rectangle('Position', bboxes(i,:), 'LineWidth', 2, 'EdgeColor', 'g'); text(bboxes(i,1), bboxes(i,2)-10, sprintf('%.2f', scores(i)), 'Color', 'r', 'FontSize', 14); end hold off;
3. 特征匹配与图像检索
使用特征匹配进行相似图像查找
目标:在数据库中查找与查询图像最相似的图像。
步骤:
-
读取查询图像:
matlab深色版本
queryImg = imread('query.jpg'); -
提取特征:
matlab深色版本
points = detectSURFFeatures(queryImg); [features, validPoints] = extractFeatures(queryImg, points); -
加载数据库图像并提取特征:
matlab深色版本
databaseImgs = imageDatastore('path/to/database/images'); for imgFile = databaseImgs.Files dbImg = readimage(databaseImgs, imgFile); dbPoints = detectSURFFeatures(dbImg); [dbFeatures, validDbPoints] = extractFeatures(dbImg, dbPoints); % 存储特征向量等信息 end -
匹配特征:
matlab深色版本
indexPairs = matchFeatures(features, dbFeatures); -
计算相似度评分并排序:
matlab深色版本
% 计算基于匹配特征数量的评分,并按降序排列 -
显示最相似的图像:
matlab深色版本
% 显示评分最高的几幅图像
以上是几个使用 MATLAB 进行图像识别的例子。这些例子展示了如何利用预训练模型和内置函数来快速实现图像分类、目标检测和图像检索等功能。
2252

被折叠的 条评论
为什么被折叠?



