“区块链+”—大佬教你看新科技如何颠覆传统行业

“区块链+”—大佬教你看新科技如何颠覆传统行业


在国内的经济环境下,2017年区块链在人们的视野中出现的频率越来越高,甚至2017年被冠上“区块链战略元年”的帽子。然而大多数人其实对区块链知之甚少,停留在一个知其概念而不知其所用的尴尬阶段。

     作为新型的底层IT技术,虽然区块链的商业应用模式也逐渐成熟,能够迅速地延伸到物联网、金融、能源互联网、公证、智能城市建设、共享经济、供应链管理等多个领域,加速社会的数字化进程,引发新一轮的技术创新和产业变革。但是“区块链+”会为我们的未来生活带来哪些奇妙的变化呢?随着2017年的尾声即将到来,Blockchain Centre上海分中心决定解决这个问题!让更多的人真正了解区块链到底会带来什么。

上周六,Blockchain Centre上海分中心联合上海张江孵化器举办了一场“区块链+”的分享活动。此次分享活动有幸邀请到DECENT中国区总经理——王晓敏,上海交通大学区块链中心发起人——Tamar两位嘉宾与在场近百位参与者就区块链技术在各个行业的应用前景与案例展开了积极地分享与讨论。



王晓敏—区块链+内容分发

首先,DECENT中国区的总经理王晓敏女士就“区块链+内容分发”主题做了一个精彩演讲。



王晓敏女士,作为DECENT中国区总经理,她十分热衷于区块链技术应用,她也是一位经验丰富的律师、工程师和区块链专家,拥有3年以上的行业经验,是2014年上海比特币博览会、布鲁塞尔比特币会议和2015年伦敦比特币博览会会议组织团队的一员。

她曾在广州人民法院担任助理法官,后来她加入了德司达和中伦律师事务所从事公司法和知识产权法律事务,这番经历使得她对于区块链技术在保护知识产权方面的运用格外关注。

     DECENT由瑞士DECENT基金会2015年创建,是一款开源非盈利数字内容分发网络,运用区块链技术确保安全和信任,该网络独立存在,允许任何创意个人、版权作者、自媒体人、出版商基于DECENT创建应用并在全球范围内发布信息,该项目的目标是变革互联网上的数字内容分发。



话语权变低甚至丧失是目前全世界创作人都普遍面临的问题,王晓敏指出。

就以音乐人为例,卖出143张CD的收益约等同于他的一首歌在iTunes上被下载了12000次。143和12000,这样的对比是惊人的,而这都是因为第三方的抽成。由于第三方的抽成过高,经过一层又一层的中介后,真正能到音乐人手中的,就只剩下一个零头了。

      就比如现在有人从itunes下载标价为0.99刀的歌,最终音乐人能拿到的钱可能只有0.09刀。



而现在,区块链的出现可以很好地解决这一难题,可以运用区块链的分布式网络来帮助每一个创作者去建立专属于自己的一对一交易平台。通过这种方式,创作者就直接越过中间商,每一笔收入都可以无需抽成,全额收入囊中。

不仅如此,因为没有了中间商,创作者还可以自行为每首歌定价。区块链也提供了全球即时到账的优势。在以往,光一首歌的版权收益,如果要从中间商转到创作者手里,至少需要一个月的时间,而区块链能够带来的好处是,歌曲的下载与创作者真正拿到收益之间,只差5秒。这是不是让创作者们很惊喜呢?后面还有更惊喜的!

      区块链除了能全球即时到账,它还有个更强大的功能就在于即时分账。比如你在乐队里是一个歌手,但你并不是这首歌的创作人和写词者。那么你可以设置自己的即时分账账本,当有人下载了一首歌之后,钱就会自动分到每个参与创者方的手上,提高支付效率。

如果你还想借区块链做更多的事情,那你或许还可以尝试一下数字内容众筹,它也是借用了区块链的即时分账,每一笔收益区块链都可以帮你自动分发。


王晓敏在演讲最后还指出,每一个内容消费者的注意力都是有价值的,作为广告主,如果可以通过代币的方式去发放广告,广告观看者每观看一次广告,就会获得一定的代币,作为该产品的优惠券或者兑换券,那么就可以实现个人注意力的连线,缩短推广与消费的距离,刺激消费。


Tamar Menteshashvili—区块链+金融/政府

区块链还处于发展的初级阶段,Tamar表示她对区块链的发展潜力有着极大的信心。在分享会上,Tamar分别详细讲述了未来如何将区块链运用在金融和公共领域中。

上海交通大学区块链中心发起人——Tamar Menteshashvili是上海交通大学博士研究生、法律咨询学者,主要在区块链技术和金融创新方向有所研究,曾发表过研究论文《区块链技术对金融和非金融领域的启示》。她目前也为美国佐治亚州政府以及乌克兰、爱沙尼亚、加勒比国家等政府提供咨询服务,帮助政府应用基于区块链的解决方案处理政务。



区块链-未来金融行业的心脏

在谈到金融方面时,Tamar认为区块链必然会带领一场金融业的变革,每个金融机构都会受到它的冲击。

在涉及了区块链对金融行业现有的一些影响后,Tamar把重点的放在了现在区块链到底能帮金融机构做什么,比如银行可以利用区块链提高他们转账的速度,一般跨国转账银行需要非常多的手续,耗费的时间与人力也很多,但是利用区块链技术,国际转账就和我们现在扫码付款的速度一样快,同时这些转账都会变得透明,更加具有可信度。

她在这里还特别提到了花旗银行最近在转账和Visa方面开始借鉴区块链技术,称这是一次非常成功的传统金融企业的尝试与改变。



Tamar甚至还专门举了一个例子来说明区块链到底能为金融行业带来多大的好处。我们都知道在加勒比国家,他们的汇率非常不稳定。现在Tamar选择和他们合作,把区块链技术带到那些汇率不稳定或者汇率很低的国家,运用区块链技术,国家的各个银行可以互相交换分享信息,同时为他们的转账加速,提高货币流通率,以此来稳定他们的货币环境。现在同样在这么做的,还有UBS英格兰银行。

最后Tamar展望了一下区块链+金融的未来,她指出区块链作为一种颠覆性技术,它提供了重新设计经济模型的可能性,并能够开发以前无法获得或无利可图的市场和产品。同时也警醒大家,虽然现在传统的金融机构更有可能将区块链用于部分项目,但是最有价值的分布式账本创新不能孤立地发展,他们需要参与者,交流和监管者之间不断的交流与合作。


>>>>

区块链-重塑政府角色


在这个板块,Tamar主要提出了区块链对三大方面的潜在影响:G2C、G2G、G2V。比如G2C(政府对公民),Tamar就认为以后的电子投票,病人的电子健康记录(EHR)和数字财产标题这些都很有可能会采用区块链技术来增加安全性;G2G(政府对政府),为政府之间的高效率信息共享也提供了可能,比如调配货物和工作人员时,就不再需要耗费时间在沟通上面了;G2V(政府对供应商),在国际物流中,世界各地的海关机构都可以减少识别的延误时间,让国际物流更快捷。


Tamar在最后还称智能区块链战略必将成为各国的竞争优势。因为选择利用区块链不仅仅只是因为技术,这个决定也可以转变政府的业务模式和流程,重塑利益相关者及其角色。要充分发挥区块链的潜力,区块链技术还必须得到国家法规的支持,并要求各部门一起为区块链创业创造友好的环境。



目前各国政府区块链应用状况


ML & AI   一个有用的公众号

长按,识别二维码,加关注

获取更多干货!

### 如何设计或优化卷积神经网络(CNN) #### 设计原则 在设计卷积神经网络时,需考虑以下几个方面: - **层数的选择**:增加网络的深度通常可以提升性能,但也会带来过拟合的风险以及计算成本的上升。因此,在实际应用中需要权衡复杂度与资源消耗之间的关系[^1]。 - **滤波器尺寸**:常用的滤波器大小为 \(3 \times 3\) 或 \(5 \times 5\)。较小的滤波器能够捕捉局部特征并减少参数数量;而较大的滤波器则有助于获取更广泛的上下文信息。 - **步幅和填充**:调整这些超参数会影响输出的空间维度及其感受野范围。适当设置可以使模型更好地适应特定任务需求[^3]。 #### 优化方法 为了进一步改善CNN的表现力,可以从如下几个角度入手进行优化: - **正则化技术的应用**:Dropout是一种有效的防止过拟合的方法之一,它随机丢弃一部分神经元从而强制让其他未被选中的单元承担更多责任来学习数据分布规律[^2]。 - **批量归一化(Batch Normalization)**:通过对每一层输入做标准化处理使得整个训练过程更加稳定快速收敛[^4]。 - **激活函数选取**:ReLU(Rectified Linear Unit)因其简单高效成为主流选择,不过也有研究表明Leaky ReLU或者ELU等变体可能更适合某些场景下的表现[^5]。 ```python import tensorflow as tf from tensorflow.keras import layers, models model = models.Sequential() model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(64, 64, 3))) model.add(layers.MaxPooling2D((2, 2))) model.add(layers.Conv2D(64, (3, 3), activation='relu')) model.add(layers.MaxPooling2D((2, 2))) model.add(layers.Flatten()) model.add(layers.Dense(64, activation='relu')) model.add(layers.Dropout(0.5)) model.add(layers.Dense(10, activation='softmax')) model.compile(optimizer='adam', loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=['accuracy']) ``` 上述代码展示了一个基础版本的CNN结构定义流程,并包含了简单的正则化措施——即dropout操作以增强泛化能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值