15 种最常用的 matplotlib 可视化图表(附 Python 源码)

在数据分析与机器学习中,我们经常要用到大量的可视化操作。一张制作精美的数据图片,不仅能展示大量的信息,更能快速传达作者的想法、态度、水平、以及审美等素质水平。

而在可视化中,matplotlib 算得上是最常用的工具。matplotlib 是 python 最著名的绘图库,它提供了一整套 API,十分适合绘制图表,或修改图表的一些属性,如字体、标签、范围等。

今天这篇文章,我们将介绍 15 种最常用的 matplotlib 可视化图表,并提供了 Python 源码,欢迎来实验楼,亲手感受一下将枯燥的数据,变为华丽的图表的神奇旅程。

(教程内容来自异步社区出版的《Python 金融大数据分析》一书,实验楼进行改编并提供线上实验环境)

课程地址:

https://www.shiyanlou.com/courses/791


开始练习之前,首先你需要安装 matplotlib。实验楼为大家提供了已经安装好了各个模块的实验环境,推荐直接来实验楼练习。

绘制表格前,我们当然还需要一组数据。这里我们生成一组伪随机数,作为后面绘图的数据:

import numpy as np
np.random.seed(1000)
y = np.random.standard_normal(20)
y

基础图表

最简单的图表可以使用 pyplot 子库制作。pyplot 子库中的 plot 函数是最基础的绘图函数,但是也相当强大。原则上,它需要两组数值。

  • x 值:包含 x 坐标(横坐标)的列表或者数组

  • y 值:包含 y 坐标(纵坐标)的列表或者数组

代码:

import matplotlib.pyplot as plt
%matplotlib inline

x = range(len(y))
plt.plot(x, y)

效果:

网格图表:

代码:

plt.plot(y.cumsum())
plt.grid(True) # 添加网格线
plt.axis('tight') # 紧凑坐标轴

添加标签的图表:

代码:

plt.figure(figsize=(7, 4))
# the figsize parameter defines the size of the figure in(width, height)
   
plt.plot(y.cumsum(), 'b', lw=1.5)
plt.plot(y.cumsum(), 'ro')
plt.grid(True)
plt.axis('tight')
plt.xlabel('index')
plt.ylabel('value')
plt.title('A Simple Plot')

二维数据图表:

(点击阅读原文,学习全部源码,下同)

二维数据子图:

二维数据子图:

线图/点图和柱状图结合

散点图

三维散点图

直方图

堆叠直方图

箱形图

3D 图

3D 散点图

在信息化时代,通过数据可视化,我们可以更直观地看到信息本身,对于从业金融或者对金融感兴趣的人来说,这是必备的技能。

Matplotlib 可以视为 Python 数据可视化的基准和主力,篇幅有限无法介绍 Matplotlib 的所有功能,希望大家多多动手,实践出真知。

???????????? 点击阅读原文,学习完整课程 & 获取源码

发布了70 篇原创文章 · 获赞 715 · 访问量 95万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览