【笔记(4)】调试器GDB

调试器gdb

三大特点

1.启动被调试的程序(run);

2.设置断点,单步执行;

3.查看变量的值;

 

查看源代码

gdb sum -tui

layout asm(显示汇编)

layout src(显示原码)

layout split(全部显示)

 

断点相关命令

break+行号

info break(查看断点编号)

delete+断点编号(删除断点)

break+行号+条件(break 17 if i=10 在17行当i=10停止)

printf i(查看变量i)

break+函数名(当调用函数停下,break func)

disable+断点编号(关闭断点)

enable+断点编号(开启断点)

clear+行号(清除这行断点)

 

运行命令

run(运行程序)

next(不进入子函数)

step(进入子函数)

continue(继续运行直到程序结束,再次遇到断点会停止)

 

 

 

作业

finish(退出该函数返回到它的调用函数中)

until(结束当前循环)

watch(在程序中设置一个监测点(即数据断点))

display(程序停止时显示变量和表达时)

调用函数:

1.停止进程

2.创建一个新的栈框(远离真实栈)

3.保存所有寄存器

4.设置你想要调用的函数的寄存器参数

5.设置栈指针指向新的栈框stack frame

6.在内存中某个位置放置一条陷阱指令

7.为陷阱指令设置返回地址

8.设置指令寄存器的值为你想要调用的函数地址

9.再次运行进程

AI实战-出租车价格数据集分析预测实例(含20个源代码+65.69 KB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:20个代码,共124.23 KB;数据大小:1个文件共65.69 KB。 使用到的模块: pandas seaborn xgboost matplotlib.pyplot sklearn.preprocessing.RobustScaler sklearn.metrics.mean_absolute_error sklearn.model_selection.GridSearchCV sklearn.model_selection.train_test_split numpy warnings joblib sklearn.set_config sklearn.impute.SimpleImputer sklearn.preprocessing.LabelEncoder sklearn.model_selection.cross_val_score sklearn.preprocessing.StandardScaler sklearn.metrics.r2_score sklearn.metrics.mean_squared_error sklearn.linear_model.LinearRegression sklearn.linear_model.Lasso sklearn.linear_model.Ridge sklearn.neighbors.KNeighborsRegressor sklearn.ensemble.RandomForestRegressor sklearn.ensemble.GradientBoostingRegressor os sklearn.preprocessing.OneHotEncoder sklearn.compose.ColumnTransformer sklearn.pipeline.Pipeline sklearn.tree.DecisionTreeRegressor sklearn.svm.SVR sklearn.neural_network.MLPRegressor bokeh.io.output_notebook bokeh.io.show bokeh.plotting.figure bokeh.layouts.gridplot sklearn.preprocessing.PolynomialFeatures scipy.stats sklearn.metrics.mean_absolute_percentage_error sklearn.ensemble.ExtraTreesRegressor xgboost.XGBRegressor lightgbm.LGBMRegressor sklearn.impute.IterativeImputer statsmodels.stats.outliers_influence.variance_inflation_factor statsmodels.api sklearn.metrics.( plotly.express psynlig.plot_correlation_heatmap bokeh.plotting.show bokeh.plotting.output_notebook catboost.CatBoostRegressor sklearn.linear_model.ElasticNet missingno
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值