【笔记(6)】嵌入式操作系统-shell编程

Shell:命令行解释器

作用:就是遵循一定的语法将输入的命令加以解释并传给系统

(启动、挂起、停止、编写一些程序)

1.定义各种变量和参数

2.提供许多在高阶语言中才具有的控制结构(循环和分支)

3.不是 Linux系统内核的一部分

4.调用系统内核的大部分功能来执行程序、创建文档并以并行的方式协调各个程序的运行

(Shell使用的熟练程度反映了用户对 Linux使用的熟练程度)

程序基础

程序必须以下面的行开始(必须方在文件的第一行): #!/bin/sh

(#!用来告诉系统它后面的参数是用来执行该文件的程序。 )

使脚本可执行,输入: chmod +x filename

然后,输入: ./filename 执行脚本

(以#开头的句子表示注释,直到这一行的结束)

变量

变量名=值

取出变量值:变量前加符号$

(1.变量赋值时,“=”两边都不能有空格;2.BASH中的语句结尾不需要分号)

例:

比较整数a和整数b是否相等:if[ $a = $b ]

比较整数a是否大于整数b:if[ $a –gt $b ]

比较字符串a和b是否相等: if[ $a = $b ]

判断字符串a是否为空:if[ -z $a ]

比较整数变量a是否大于b:if[ $a –gt $b ]

-e 文件已存在

-f 文件是普通文件

-s 文件大小不为零

-d 文件是一个目录

-r 文件对当前用户可以读取

-w 文件对当前用户可以写入

-x 文件对当前用户可以执行

if语句:

  • If [expression]     
  • then         
  •     #code block     
  • fi
  •  
  • If [expression]     
  • then         
  •     #code block     
  • else         
  •     #code block     
  • fi
  •  
  • If [expression]     
  • then
  •     #code block     
  •     else if [expression]         
  •     then              
  •         #code block           
  •     else           
  •         #code block           
  •     fi     
  • fi

While循环的结构:     

  • while [condition]     
  • do         
  •     #code block     
  • done

 

AI实战-出租车价格数据集分析预测实例(含20个源代码+65.69 KB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:20个代码,共124.23 KB;数据大小:1个文件共65.69 KB。 使用到的模块: pandas seaborn xgboost matplotlib.pyplot sklearn.preprocessing.RobustScaler sklearn.metrics.mean_absolute_error sklearn.model_selection.GridSearchCV sklearn.model_selection.train_test_split numpy warnings joblib sklearn.set_config sklearn.impute.SimpleImputer sklearn.preprocessing.LabelEncoder sklearn.model_selection.cross_val_score sklearn.preprocessing.StandardScaler sklearn.metrics.r2_score sklearn.metrics.mean_squared_error sklearn.linear_model.LinearRegression sklearn.linear_model.Lasso sklearn.linear_model.Ridge sklearn.neighbors.KNeighborsRegressor sklearn.ensemble.RandomForestRegressor sklearn.ensemble.GradientBoostingRegressor os sklearn.preprocessing.OneHotEncoder sklearn.compose.ColumnTransformer sklearn.pipeline.Pipeline sklearn.tree.DecisionTreeRegressor sklearn.svm.SVR sklearn.neural_network.MLPRegressor bokeh.io.output_notebook bokeh.io.show bokeh.plotting.figure bokeh.layouts.gridplot sklearn.preprocessing.PolynomialFeatures scipy.stats sklearn.metrics.mean_absolute_percentage_error sklearn.ensemble.ExtraTreesRegressor xgboost.XGBRegressor lightgbm.LGBMRegressor sklearn.impute.IterativeImputer statsmodels.stats.outliers_influence.variance_inflation_factor statsmodels.api sklearn.metrics.( plotly.express psynlig.plot_correlation_heatmap bokeh.plotting.show bokeh.plotting.output_notebook catboost.CatBoostRegressor sklearn.linear_model.ElasticNet missingno
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值