树状数组(两种)

单点修改,区间查询

  1. 关键:lowbit函数
  2. 核心代码
int lowbit(int x)//	取x的最小不为0的位置 
{
    return x & -x;
}

void update(int x, int c) 
{
    for (int i = x;i <= n; i += lowbit(i)) tr[i] += c;
}

ll getsum(int x)  
{
    int res = 0;
    for (int i = x;i > 0; i -= lowbit(i)) res += tr[i];
    return res;
}

区间修改,区间查询

  1. 原理:前缀和,
    *首先对于一个区间和a[1]+a[2]+…+a[n]
    定义c为差分数组,
    那么我们可以得到a[1]+a[2]+…+a[n] = (c[1]) + (c[1]+c[2]) + … + (c[1]+c[2]+…+c[n])
    我们进一步将公式转换= nc[1] + (n-1)c[2] +… +c[n]
    最终我们得到求和公式= n * (c[1]+c[2]+…+c[n]) - (0
    c[1]+1
    c[2]+…+(n-1)c[n])
  • 代码
#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;

typedef long long ll;
const int N = 1e6 + 10;
int n, q;
ll a[N], c1[N], c2[N];

void update(ll *h, int x, ll y){
   while(x <= n){
   	h[x] += y;
   	x += x & -x;
   }
}

ll getsum(ll *h, int x){
   ll res = 0;
   while(x){
   	res += h[x];
   	x -= x & -x;
   }
   return res;
}

int getsum(int x)//求差分数组c1的前缀和->修改后的原数组
{
   int ans = 0;
   while (x)
   {
       ans += c1[x];
       x -= lowbit(x);
   }
   return ans;
}

int main(int argc, char const *argv[])
{
   // freopen("in.txt", "r", stdin);
   // freopen("out.txt", "w", stdout);
   cin >> n >> q;
   for (int i = 1; i <= n; ++i)
   {
   	cin >> a[i];
   	update(c1, i, a[i] - a[i - 1]);// c1存 差分
   	update(c2, i, (i - 1) * (a[i] - a[i - 1]));// c2存 差分*系数
   }
   for(int i = 1;i <= q;i++){
   	ll id, l, r, x;
   	cin >> id >> l >> r;
   	if(id == 1){
   		cin >> x;
   		update(c1, l, x);
   		update(c1, r + 1, -x);
   		update(c2, l, x * (l - 1));
   		update(c2, r + 1, -x * r);
   	}else{
   		ll sum1 = (l - 1) * getsum(c1, l - 1) - getsum(c2, l - 1);// 求和公式
   		ll sum2 = r * getsum(c1, r) - getsum(c2, r);
   		cout << sum2 - sum1 << endl;
   	}
   }
   return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值