FGSM (Fast Gradient Sign Method)
出处:Explaining and Harnessing adversarial examples
类型:白盒攻击
核心思想:沿着深度学习模型的梯度方向添加图像扰动,使损失函数增大,导致模型进行错误的分类。
观点:高维空间下的线性行为足以产生对抗样本。
x ~ = x + η η = ε s i g n ( ▽ x J ( θ , x , y ) ) \tilde{x}=x+\eta\\ \eta =\varepsilon sign\left ( \bigtriangledown _{x}J \left ( \theta,x,y \right ) \right )