FGSM算法学习笔记

FGSM是一种白盒攻击方式,通过沿着模型梯度方向添加扰动来误导模型。它揭示了高维空间中模型的线性弱点,扰动公式为x+η,其中η是基于损失函数梯度的符号函数。FGSM常用于对抗性样本的生成,相关代码可在CleverHans库找到。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

FGSM (Fast Gradient Sign Method)
出处:Explaining and Harnessing adversarial examples
类型:白盒攻击
核心思想:沿着深度学习模型的梯度方向添加图像扰动,使损失函数增大,导致模型进行错误的分类。
观点:高维空间下的线性行为足以产生对抗样本。

x ~ = x + η η = ε s i g n ( ▽ x J ( θ , x , y ) ) \tilde{x}=x+\eta\\ \eta =\varepsilon sign\left ( \bigtriangledown _{x}J \left ( \theta,x,y \right ) \right )

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值